Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 363 -365
Views & Comments |
Optically Digitalized Holography: A Perspective for All-Optical Machine Learning
Min Gua, Xinyuan Fangab, Haoran Renc, Elena Goia
a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
b National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
c Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich 80539, Germany
Issue Date: 11 July 2019
E-mail this article
E-mail Alert
Articles by authors
Min Gu
Xinyuan Fang
Haoran Ren
Elena Goi
Cite this article:   
Min Gu,Xinyuan Fang,Haoran Ren, et al. Optically Digitalized Holography: A Perspective for All-Optical Machine Learning[J]. Engineering, 2019, 5(3): 363 -365 .
URL:     OR
[1]   D. Gabor. A new microscopic principle. Nature. 1948; 161(4098): 777.
[2]   D. Gabor. Microscopy by reconstructed wave-fronts. Proc R Soc Lond A Math Phys Sci. 1949; 197(1051): 454-487.
[3]   R.L. Powell, K.A. Stetson. Interferometric vibration analysis by wavefront reconstruction. J Opt Soc Am. 1965; 55(12): 1593-1598.
[4]   G. Baum, G.W. Stroke. Optical holographic three-dimensional ultrasonography. Science. 1975; 189(4207): 994-995.
[5]   E.N. Leith, J. Upatnieks. Wavefront reconstruction with diffused illumination and three-dimensional objects. J Opt Soc Am. 1964; 54(11): 1295-1301.
[6]   B.R. Brown, A.W. Lohmann. Complex spatial filtering with binary masks. Appl Opt. 1966; 5(6): 967-969.
[7]   J. Verbeeck, H. Tian, P. Schattschneider. Production and application of electron vortex beams. Nature. 2010; 467(7313): 301-304.
[8]   Z. Zhang, Z. You, D. Chu. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl. 2014; 3: e213.
[9]   B. Javidi, C.J. Kuo. Joint transform image correlation using a binary spatial light modulator at the Fourier plane. Appl Opt. 1988; 27(4): 663-665.
[10]   E. Downing, L. Hesselink, J. Ralston, R. Macfarlane. A three-color, solid-state, three-dimensional display. Science. 1996; 273(5279): 1185-1189.
[11]   J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, N. Liu. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv. 2018; 4(6): eaar6768.
[12]   J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photonics. 2008; 2(3): 190-195.
[13]   J.F. Heanue, M.C. Bashaw, L. Hesselink. Volume holographic storage and retrieval of digital data. Science. 1994; 265(5173): 749-752.
[14]   D.G. Grier. A revolution in optical manipulation. Nature. 2003; 424(6950): 810-816.
[15]   X. Ni, A.V. Kildishev, V.M. Shalaev. Metasurface holograms for visible light. Nat Commun. 2013; 4: 2807.
[16]   X. Li, Q. Zhang, X. Chen, M. Gu. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep. 2013; 3: 2819.
[17]   X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, et al.. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015; 6: 6984.
[18]   X. Li, J. Liu, L. Cao, Y. Wang, G. Jin, M. Gu. Light-control-light nanoplasmonic modulator for 3D micro-optical beam shaping. Adv Opt Mater. 2016; 4(1): 70-75.
[19]   S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv. 2018; 1(2): 170002.
[20]   Zhang Q, Yu H, Barbiero M, Wang B, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl (In press).
[21]   M. Gu, Q. Zhang, S. Lamon. Nanomaterials for optical data storage. Nat Rev Mater. 2016; 1: 16070.
[22]   M. Gu. Advanced optical imaging theory.
[23]   H. Lin, B. Jia, M. Gu. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett. 2011; 36(3): 406-408.
[24]   M. Gu, H. Lin, X. Li. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt Lett. 2013; 38(18): 3627-3630.
[25]   H. Ren, H. Lin, X. Li, M. Gu. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array. Opt Lett. 2014; 39(6): 1621-1624.
[26]   Z. Gan, Y. Cao, R.A. Evans, M. Gu. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun. 2013; 4: 2061.
[27]   Z. Yue, G. Xue, J. Liu, Y. Wang, M. Gu. Nanometric holograms based on a topological insulator material. Nat Commun. 2017; 8: 15354.
[28]   G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, et al.. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42: 60-88.
[29]   K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh. Machine learning for molecular and materials science. Nature. 2018; 559(7715): 547-555.
[30]   G. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed, N. Jaitly, et al.. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012; 29(6): 82-97.
[31]   D. Psaltis, D. Brady, X.G. Gu, S. Lin. Holography in artificial neural networks. Nature. 1990; 343(6256): 325-330.
[32]   X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, et al.. All-optical machine learning using diffractive deep neural networks. Science. 2018; 361(6406): 1004-1008.
[33]   Goi E, Gu M. Laser printing of a nano-imager to perform full optical machine learning [presentation]. In: Conference on Lasers and Electro-Optics/Europe; 2019 Jun 23–27; Munich, Germany; 2019.
[34]   L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, et al.. Machine-learning reprogrammable metasurface imager. Nat Commun. 2019; 10(1): 1082.
[35]   H. Haas, L. Yin, Y. Wang, C. Chen. What is LiFi?. J Lightwave Technol. 2015; 34(6): 1533-1544.
[36]   Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, et al.. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017; 11: 441-446.
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.