Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 448 -457     https://doi.org/10.1016/j.eng.2019.03.007
Research Deep Matter & Energy—Review |
Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges
Sheng-Ao Liu(), Shu-Guang Li
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract
Abstract  Abstract

The subduction of marine carbonates and carbonated oceanic crust to the Earth’s interior and the return of recycled carbon to the surface via volcanism may play a pivotal role in governing Earth’s atmosphere, climate, and biosphere over geologic time. Identifying recycled marine carbonates and evaluating their fluxes in Earth’s mantle are essential in order to obtain a complete understanding of the global deep carbon cycle (DCC). Here, we review recent advances in tracing the DCC using stable isotopes of divalent metals such as calcium (Ca), magnesium (Mg), and zinc (Zn). The three isotope systematics show great capability as tracers due to appreciable isotope differences between marine carbonate and the terrestrial mantle. Recent studies have observed anomalies of Ca, Mg, and Zn isotopes in basalts worldwide, which have been interpreted as evidence for the recycling of carbonates into the mantle, even into the mantle transition zone (410–660 km). Nevertheless, considerable challenges in determining the DCC remain because other processes can potentially fractionate isotopes in the same direction as expected for carbonate recycling; these processes include partial melting, recycling of carbonated eclogite, separation of metals and carbon, and diffusion. Discriminating between these effects has become a key issue in the study of the DCC and must be considered when interpreting any isotope anomaly of mantle-derived rocks. An ongoing evaluation on the plausibility of potential mechanisms and possible solutions for these challenges is discussed in detail in this work. Based on a comprehensive evaluation, we conclude that the large-scale Mg and Zn isotope anomalies of the Eastern China basalts were produced by recycling of Mg- and Zn-rich carbonates into their mantle source.

Keywords Deep carbon cycle      Calcium isotopes      Magnesium isotopes      Zinc isotopes     
Corresponding Authors: Sheng-Ao Liu   
Issue Date: 11 July 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Ao Liu
Shu-Guang Li
Cite this article:   
Sheng-Ao Liu,Shu-Guang Li. Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges[J]. Engineering, 2019, 5(3): 448 -457 .
URL:  
http://www.engineering.org.cn/EN/10.1016/j.eng.2019.03.007     OR     http://www.engineering.org.cn/EN/Y2019/V5/I3/448
References
[1]   R. Dasgupta. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem. 2013; 75: 183-229.
[2]   M. Javoy, F. Pineau, C.J. Allègre. Carbon geodynamic cycle. Nature. 1982; 300(5888): 171.
[3]   R. Dasgupta, M.M. Hirschmann. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. 2010; 298: 1-13.
[4]   R.M. Hazen, C.M. Schiffries. Why deep carbon?. Rev Mineral Geochem. 2013; 75: 1-6.
[5]   M.S. Duncan, R. Dasgupta. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat Geosci. 2017; 10: 387-392.
[6]   P. Deines. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev. 2002; 58(3–4): 247-278.
[7]   S. Huang, J. Farkaš, S.B. Jacobsen. Stable calcium isotope compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta. 2011; 75(17): 4987-4997.
[8]   W. Yang, F.Z. Teng, H.F. Zhang, S.G. Li. Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chem Geol. 2012; 328: 185-194.
[9]   J. Huang, S.G. Li, Y. Xiao, S. Ke, W.Y. Li, Y. Tian. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta. 2015; 164: 298-317.
[10]   S.A. Liu, Z.Z. Wang, S.G. Li, J. Huang, W. Yang. Zinc isotope evidence for a large-scale carbonated mantle beneath Eastern China. Earth Planet Sci Lett. 2016; 444: 169-178.
[11]   H.C. Tian, W. Yang, S.G. Li, S. Ke, Z.Y. Chu. Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta. 2016; 188: 93-105.
[12]   S.G. Li, W. Yang, S. Ke, X. Meng, H. Tian, L. Xu, et al.. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in Eastern China. Natl Sci Rev. 2017; 4(1): 111-120.
[13]   A.W. Hofmann. A store of subducted carbon beneath Eastern China. Natl Sci Rev. 2017; 4(1): 2.
[14]   B.X. Su, Y. Hu, F.Z. Teng, Y. Xiao, X.H. Zhou, Y. Sun, et al.. Magnesium isotope constraints on subduction contribution to Mesozoic and Cenozoic East Asian continental basalts. Chem Geol. 2017; 466: 116-122.
[15]   X.J. Wang, L.H. Chen, A.W. Hofmann, F.G. Mao, J.Q. Liu, Y. Zhong, et al.. Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett. 2017; 465: 16-28.
[16]   D. Liu, Z. Zhao, D.C. Zhu, Y. Niu, E. Widom, F.Z. Teng, et al.. Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth Planet Sci Lett. 2015; 430: 458-469.
[17]   S. Ke, F.Z. Teng, S.G. Li, T. Gao, S.A. Liu, Y. He, et al.. Mg, Sr, and O isotope geochemistry of syenites from northwest Xinjiang, China: tracing carbonate recycling during Tethyan oceanic subduction. Chem Geol. 2016; 437: 109-119.
[18]   F. Liu, X. Li, G. Wang, Y. Liu, H. Zhu, J. Kang, et al.. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes. J Geophys Res Solid Earth. 2017; 122: 9729-9744.
[19]   H.C. Tian, W. Yang, S.G. Li, S. Ke. Could sedimentary carbonates be recycled into the lower mantle? Constraints from Mg isotopic composition of Emeishan basalts. Lithos. 2017; 292–293: 250-261.
[20]   Z. Cheng, Z. Zhang, T. Hou, M. Santosh, L. Chen, S. Ke, et al.. Decoupling of Mg–C and Sr–Nd–O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta. 2017; 202: 159-178.
[21]   Z. Cheng, Z. Zhang, Q. Xie, T. Hou, S. Ke. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett. 2018; 489: 100-110.
[22]   S.J. Wang, F.Z. Teng, J.M. Scott. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta. 2016; 185: 78-87.
[23]   T.H.A. Hoang, S.H. Choi, Y. Yu, T.H. Pham, K.H. Nguyen, J.S. Ryu. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos. 2018; 296: 382-395.
[24]   P.E. Biscaye, V. Kolla, K.K. Turekian. Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J Geophys Res. 1976; 81: 2595-2603.
[25]   L. Brečević, V. Nöthig-Laslo, D. Kralj, S. Popović. Effect of divalent cations on the formation and structure of calcium carbonate polymorphs. J Chem Soc, Faraday Trans. 1996; 92: 1017-1022.
[26]   W.F. McDonough, S.S. Sun. The composition of the Earth. Chem Geol. 1995; 120(3–4): 223-253.
[27]   R.J. Reeder, G.M. Lamble, P.A. Northrup. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. Am Mineral. 1999; 84(7–8): 1049-1060.
[28]   K.K. Turekian, K.H. Wedepohl. Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull. 1961; 72(2): 175-192.
[29]   V.J.M. Salters, A. Stracke. Composition of the depleted mantle. Geochem Geophys Geosyst. 2004; 5: 5.
[30]   J.L. Li, R. Klemd, J. Gao, M. Meyer. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): evidence for prograde metamorphism during subduction of oceanic crust. Am Mineral. 2014; 99(1): 206-217.
[31]   F.Z. Teng, W.Y. Li, S. Ke, B. Marty, N. Dauphas, S. Huang, et al.. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta. 2010; 74(14): 4150-4166.
[32]   M.S. Fantle, E.T. Tipper. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth Sci Rev. 2014; 129: 148-177.
[33]   S. Pichat, C. Douchet, F. Albarède. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett. 2003; 210: 167-178.
[34]   S.A. Liu, H. Wu, S.Z. Shen, G. Jiang, S. Zhang, Y. Lv, et al.. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology. 2017; 45: 343-346.
[35]   Z.Z. Wang, S.A. Liu, J. Liu, J. Huang, Y. Xiao, Z.Y. Chu, et al.. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim Cosmochim Acta. 2017; 198: 151-167.
[36]   C. Chen, Y. Liu, L. Feng, S.F. Foley, L. Zhou, M.N. Ducea, et al.. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta. 2018; 238: 55-67.
[37]   D.A. Ionov, Y.H. Qi, J.T. Kang, A.V. Golovin, O.B. Oleinikov, W. Zheng, et al.. Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochim Cosmochim Acta. 2019; 248(1): 1-13.
[38]   J.T. Kang, D.A. Ionov, F. Liu, C.L. Zhang, A.V. Golovin, L.P. Qin, et al.. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth Planet Sci Lett. 2017; 474: 128-137.
[39]   S. Huang, J. Farkaš, S.B. Jacobsen. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett. 2010; 292(3–4): 337-344.
[40]   J.T. Kang, H.L. Zhu, Y.F. Liu, F. Liu, F. Wu, Y.T. Hao, et al.. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. Geochim Cosmochim Acta. 2016; 174: 335-344.
[41]   M. Amini, A. Eisenhauer, F. Böhm, C. Holmden, K. Kreissig, F. Hauff, et al.. Calcium isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: evidence for Ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res. 2009; 33(2): 231-247.
[42]   L.S. Doucet, N. Mattielli, D.A. Ionov, W. Debouge, A.V. Golovin. Zn isotopic heterogeneity in the mantle: a melting control?. Earth Planet Sci Lett. 2016; 451: 232-240.
[43]   P.A. Sossi, O. Nebel, H.S.C. O’Neill, F. Moynier. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem Geol. 2018; 477: 73-84.
[44]   S.J. Wang, F.Z. Teng, S.G. Li. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun. 2014; 5: 5328.
[45]   B.G. Pokrovsky, V. Mavromatis, O.S. Pokrovsky. Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: a new tool for tracing the change in weathering regime?. Chem Geol. 2011; 290(1): 67-74.
[46]   A. Geske, J. Zorlu, D. Richter, D. Buhl, A. Niedermayr, A. Immenhauser. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem Geol. 2012; 332: 45-64.
[47]   S. Riechelmann, D. Buhl, A. Schröder-Ritzrau, D. Riechelmann, D. Richter, H. Vonhof, et al.. The magnesium isotope record of cave carbonate archives. Clim Past. 2012; 8(6): 1849-1867.
[48]   J.A. Higgins, D.P. Schrag. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet Sci Lett. 2012; 357: 386-396.
[49]   J.A. Higgins, D.P. Schrag. The Mg isotopic composition of Cenozoic seawater–evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci Lett. 2015; 416: 73-81.
[50]   C.L. Blättler, N.R. Miller, J.A. Higgins. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet Sci Lett. 2015; 419: 32-42.
[51]   W. Yang, F.Z. Teng, H.F. Zhang. Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China Craton. Earth Planet Sci Lett. 2009; 288(3): 475-482.
[52]   B. Bourdon, E.T. Tipper, C. Fitoussi, A. Stracke. Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta. 2010; 74(17): 5069-5083.
[53]   P.A.P. von Strandmann, T. Elliott, H.R. Marschall, C. Coath, Y.J. Lai, A.B. Jeffcoate, et al.. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta. 2011; 75: 5247-5268.
[54]   F. Huang, Z. Zhang, C.C. Lundstrom, X. Zhi. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta. 2011; 75: 3318-3334.
[55]   S.A. Liu, F.Z. Teng, W. Yang, F. Wu. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton. Earth Planet Sci Lett. 2011; 308(1): 131-140.
[56]   Y. Xiao, F.Z. Teng, H.F. Zhang, W. Yang. Large magnesium isotope fractionation in peridotite xenoliths from eastern North China Craton: product of melt–rock interaction. Geochim Cosmochim Acta. 2013; 115: 241-261.
[57]   Y. An, J.X. Huang, W. Griffin, C. Liu, F. Huang. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian Cratons. Geochim Cosmochim Acta. 2017; 200: 167-185.
[58]   J. Huang, S. Chen, X.C. Zhang, F. Huang. Effects of melt percolation on Zn isotope heterogeneity in the mantle: constraints from peridotite massifs in Ivrea-Verbano Zone, Italian Alps. J Geophys Res Solid Earth. 2018; 123(4): 2706-2722.
[59]   S.R.W. Hulett, A. Simonetti, E.T. Rasbury, N.G. Hemming. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nat Geosci. 2016; 9: 904-908.
[60]   M.S. Fantle, D.J. DePaolo. Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett. 2005; 237(1): 102-117.
[61]   J.A. Higgins, D.P. Schrag. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta. 2010; 74(17): 5039-5053.
[62]   V. Le Roux, C.A. Lee, S.J. Turner. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Acta. 2010; 74(9): 2779-2796.
[63]   S.J. Wang, F.Z. Teng, S.G. Li, J.A. Hong. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta. 2014; 143: 34-48.
[64]   S.A. Liu, F.Z. Teng, Y.S. He, S. Ke, S.G. Li. Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett. 2010; 297: 646-654.
[65]   F.Z. Teng, W.Y. Li, R.L. Rudnick, L.R. Gardner. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet Sci Lett. 2010; 300(1): 63-71.
[66]   M.L. Pons, B. Debret, P. Bouilhol, A. Delacour, H. Williams. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nat Commun. 2016; 7: 13794.
[67]   E.C. Inglis, B. Debret, K.W. Burton, M.A. Millet, M.L. Pons, C.W. Dale, et al.. The behaviour of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine Ophiolites. Geochem Geophys Geosyst. 2017; 18(7): 2562-2579.
[68]   S.H. Little, D. Vance, J. McManus, S. Severmann. Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes. Geology. 2016; 44: 207-210.
[69]   H. Chen, P.S. Savage, F.Z. Teng, R.T. Helz, F. Moynier. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sci Lett. 2013; 369: 34-42.
[70]   Y. Sun, F. Teng, J.F. Ying, B.X. Su, Y. Hu, Q.C. Fan, et al.. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. J Geophys Res Solid Earth. 2017; 122(10): 7562-7572.
[71]   J.I. Kim, S.H. Choi, G.W. Koh, J.B. Park, J.S. Ryu. Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. Lithos. 2019; 326–327: 476-490.
[72]   H.C. Tian, W. Yang, S.G. Li, S. Ke, X.Z. Duan. Low δ26Mg volcanic rocks of Tengchong in Southwestern China: a deep carbon cycle induced by supercritical liquids. Geochim Cosmochim Acta. 2018; 240: 191-219.
[73]   Z.Z. Wang, S.A. Liu, L.H. Chen, S.G. Li, G. Zeng. Compositional transition in natural alkaline lavas through silica-undersaturated melt–lithosphere interaction. Geology. 2018; 46(9): 771-774.
[74]   X.J. Wang, L.H. Chen, A.W. Hofmann, T. Hanyu, H. Kawabata, Y. Zhong, et al.. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci USA. 2018; 115(35): 8682-8687.
[75]   B. Debret, P. Bouilhol, M.L. Pons, H. Williams. Carbonate transfer during the onset of slab devolatilization: new insights from Fe and Zn stable isotopes. J Petrol. 2018; 59(6): 1145-1166.
[76]   J. Shen, S.G. Li, S.J. Wang, F.Z. Teng, Q.L. Li, Y.S. Liu. Subducted Mg-rich carbonates into the deep mantle wedge. Earth Planet Sci Lett. 2018; 503: 118-130.
[77]   X. Zhao, Z. Zhang, S. Huang, Y. Liu, X. Li, H. Zhang. Coupled extremely light Ca and Fe isotopes in peridotites. Geochim Cosmochim Acta. 2017; 208: 368-380.
[78]   M. Schiller, C. Paton, M. Bizzarro. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS. J Anal At Spectrom. 2012; 27: 38-49.
[79]   D. Zhao, S. Yu, E. Ohtani. East Asia: seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci. 2011; 40(3): 689-709.
[80]   D.H. Green. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett. 1973; 19(1): 37-53.
[81]   A.L. Jaques, D.H. Green. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol. 1980; 73(3): 287-310.
[82]   F.Z. Teng. Magnesium isotope geochemistry. Rev Mineral Geochem. 2017; 82(1): 219-287.
[83]   M.R. Handler, J.A. Baker, M. Schiller, V.C. Bennett, G.M. Yaxley. Magnesium stable isotope composition of Earth’s upper mantle. Earth Planet Sci Lett. 2009; 282(1–4): 306-313.
[84]   N. Dauphas, F.Z. Teng, N.T. Arndt. Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta. 2010; 74(11): 3274-3291.
[85]   Y. Zhong, L.H. Chen, X.J. Wang, G.L. Zhang, L.W. Xie, G. Zeng. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth Planet Sci Lett. 2017; 463: 127-135.
[86]   J. Zhang, Y. Liu, W. Ling, S. Gao. Pressure-dependent compatibility of iron in garnet: insights into the origin of ferropicritic melt. Geochim Cosmochim Acta. 2017; 197: 356-377.
[87]   J. Huang, X.C. Zhang, S. Chen, L. Tang, G. Wörner, H. Yu, et al.. Zinc isotopic systematics of Kamchatka–Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Acta. 2018; 238: 85-101.
[88]   M. Caroff, R.C. Maury, G. Guille, J. Cotten. Partial melting below Tubuai (Austral Islands, French Polynesia). Contrib Mineral Petrol. 1997; 127: 369-382.
[89]   R. Dasgupta, M.M. Hirschmann. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature. 2006; 440(7084): 659-662.
[90]   S.G. Li, Y. Wang. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China Craton—geodynamic effects of deep recycled Carbon. Sci China Earth Sci. 2018; 61: 853-868.
[91]   A.V. Sobolev, A.W. Hofmann, D.V. Kuzmin, G.M. Yaxley, N.T. Arndt, S.L. Chung, et al.. The amount of recycled crust in sources of mantle-derived melts. Science. 2007; 316: 412-417.
[92]   J.Q. Liu, Z.Y. Ren, A.R.L. Nichols, M.S. Song, S.P. Qian, Y. Zhang, et al.. Petrogenesis of Late Cenozoic basalts from north Hainan Island: constraints from melt inclusions and their host olivines. Geochim Cosmochim Acta. 2015; 152: 89-121.
[93]   D. Pan, L. Spanu, B. Harrison, D.A. Sverjensky, G. Galli. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA. 2013; 110(17): 6646-6650.
[94]   M.L. Frezzotti, J. Selverstone, Z.D. Sharp, R. Compagnoni. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci. 2011; 4: 703-706.
[95]   I. Kushiro, H. Satake, S. Akimoto. Carbonate-silicate reactions at high pressures and possible presence of dolomite and magnesite in upper mantle. Earth Planet Sci Lett. 1975; 28: 116-120.
[96]   E. Boulard, D. Pan, G. Galli, Z. Liu, W.L. Mao. Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. 2015; 6: 6311.
[97]   M.A. Longpré, J. Stix, A. Klügel, N. Shimizu. Mantle to surface degassing of carbon-and sulphur-rich alkaline magma at El Hierro. Canary Islands. Earth Planet Sci Lett. 2017; 460: 268-280.
[98]   G. Boudoire, A.L. Rizzo, A. Di Muro, F. Grassa, M. Liuzzo. Extensive CO2 degassing in the upper mantle beneath oceanic basaltic volcanoes: first insights from Piton de la Fournaise volcano (La Réunion Island). Geochim Cosmochim Acta. 2018; 235: 376-401.
[99]   C. Aubaud, F. Pineau, R. Hékinian, M. Javoy. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet Sci Lett. 2005; 235: 511-527.
[100]   P.H. Barry, D.R. Hilton, E. Füri, S.A. Halldórsson, K. Grönvold. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochim Cosmochim Acta. 2014; 134: 74-99.
[101]   F.M. Richter, E.B. Watson, R.A. Mendybaev, F.Z. Teng, P.E. Janney. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta. 2008; 72(1): 206-220.
[102]   G. Dominguez, G. Wilkins, M.H. Thiemens. The Soret effect and isotopic fractionation in high-temperature silicate melts. Nature. 2011; 473: 70.
[103]   F. Huang, P. Chakraborty, C.C. Lundstrom, C. Holmden, J.J.G. Glessner, S.W. Kieffer, et al.. Isotope fractionation in silicate melts by thermal diffusion. Nature. 2010; 464: 396-400.
[104]   F.Z. Teng, N. Dauphas, R.T. Helz, S. Gao, S. Huang. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett. 2011; 308(3–4): 317-324.
[105]   C.K.I. Sio, N. Dauphas, F.Z. Teng, M. Chaussidon, R. Helz, M. Roskosz. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochim Cosmochim Acta. 2013; 123: 302-321.
[106]   Y.J. Lai, P.A.P. von Strandmann, R. Dohmen, E. Takazawa, T. Elliott. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta. 2015; 164: 318-332.
Related
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering