Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 372 -378     https://doi.org/10.1016/j.eng.2019.03.004
Views & Comments |
The Deep Carbon Observatory: A Ten-Year Quest to Study Carbon in Earth
Craig M. Schiffries, Andrea Johnson Mangum, Jennifer L. Mays, Michelle Hoon-Starr, Robert M. Hazen
Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
Abstract
Issue Date: 11 July 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Craig M. Schiffries
Andrea Johnson Mangum
Jennifer L. Mays
Michelle Hoon-Starr
Robert M. Hazen
Cite this article:   
Craig M. Schiffries,Andrea Johnson Mangum,Jennifer L. Mays, et al. The Deep Carbon Observatory: A Ten-Year Quest to Study Carbon in Earth[J]. Engineering, 2019, 5(3): 372 -378 .
URL:  
http://www.engineering.org.cn/EN/10.1016/j.eng.2019.03.004     OR     http://www.engineering.org.cn/EN/Y2019/V5/I3/372
References
[1]   R.M. Hazen, C. Schiffries. Why deep carbon?. Rev Mineral Geochem. 2013; 75: 1-6.
[2]   In: editor. Chantilly: Mineralogical Society of America and Geochemical Society; 2013.
[3]   M. Santoro, F.A. Gorelli, R. Bini, J. Haines, O. Cambon, C. Levelut, et al.. Partially collapsed cristobalite structure in the non molecular phase V in CO2. Proc Natl Acad Sci USA. 2012; 109(14): 5176-5179.
[4]   M. Santoro, F.A. Gorelli, R. Bini, A. Salamat, G. Garbarino, C. Levelut, et al.. Carbon enters silica forming a cristobalite-type CO2-SiO2 solid solution. Nat Commun. 2014; 5(3761): 3761.
[5]   E. Boulard, A. Gloter, A. Corgne, D. Antonangeli, A.L. Auzende, J.P. Perrillat, et al.. New host for carbon in the deep Earth. Proc Natl Acad Sci USA. 2011; 108(13): 5184-5187.
[6]   E. Boulard, D. Pan, G. Galli, Z. Liu, W.L. Mao. Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. 2015; 6(6311): 6311.
[7]   V. Cerantola, E. Bykova, I. Kupenko, M. Merlini, L. Ismailova, C. McCammon, et al.. Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun. 2017; 8(15960): 15960.
[8]   J. Liu, J.F. Lin, V.B. Prakapenka. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep. 2015; 5(7640): 7640.
[9]   S.S. Lobanov, X. Dong, N.S. Martirosyan, A.I. Samtsevich, V. Stevanovic, P.N. Gavryushkin, et al.. Raman spectroscopy and X-ray diffraction of sp3 CaCO3 at lower mantle pressures. Phys Rev B. 2017; 96(10): 104101.
[10]   M. Merlini, V. Cerantola, G.D. Gatta, M. Gemmi, M. Hanfland, I. Kupenko, et al.. Dolomite-IV: candidate structure for a carbonate in the Earth’s lower mantle. Am Mineral. 2017; 102(8): 1763-1766.
[11]   M. Merlini, W.A. Crichton, M. Hanfland, M. Gemmi, H. Müller, I. Kupenko, et al.. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci USA. 2012; 109(34): 13509-13514.
[12]   S. Dorfman, J. Badro, F. Nabiei, V.B. Prakapenka, M. Cantoni, P. Gillet. Carbonate stability in the reduced lower mantle. Earth Planet Sci Lett. 2018; 489: 84-91.
[13]   S. Fu, J. Yang, J.F. Lin. Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth’s lower mantle. Phys Rev Lett. 2017; 118(3): 036402.
[14]   B. Wood, J. Li, A. Shahar. Carbon in the core: its influence on the properties of core and mantle. Rev Mineral Geochem. 2013; 75: 231-250.
[15]   A. Shahar, E.A. Schauble, R. Caracas, A.E. Gleason, M.M. Reagan, Y. Xiao, et al.. Pressure-dependent isotopic composition of iron alloys. Science. 2016; 352(6285): 580-582.
[16]   B. Chen, Z. Li, D. Zhang, J. Liu, M.Y. Hu, J. Zhao, et al.. Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proc Natl Acad Sci USA. 2014; 111(50): 17755-17758.
[17]   R. Dasgupta. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem. 2013; 75: 183-229.
[18]   H. Ni, H. Keppler. Carbon in silicate melts. Rev Mineral Geochem. 2013; 75: 251-287.
[19]   R. Dasgupta, M. Hirschmann. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. 2010; 298(1–2): 1-13.
[20]   A.R. Thomson, M.J. Walter, S.C. Kohn, R.A. Brooker. Slab melting as a barrier to deep carbon subduction. Nature. 2016; 529(7584): 76-79.
[21]   S. Poli. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci. 2015; 8(8): 633-636.
[22]   D. Pan, L. Spanu, B. Harrison, D.A. Sverjensky, G. Galli. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA. 2013; 110(17): 6646-6650.
[23]   S. Facq, I. Daniel, D. Sverjensky. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochim Cosmochim Acta. 2014; 132: 375-390.
[24]   D. Sverjensky, B. Harrison, D. Azzolini. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C. Geochim Cosmochim Acta. 2014; 129: 125-145.
[25]   D. Sverjensky, V. Stagno, F. Huang. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci. 2014; 7(12): 909-913.
[26]   D.A. Sverjensky, F. Huang. Diamond formation due to a pH drop during fluid-rock interactions. Nat Commun. 2015; 6(8702): 8702.
[27]   M.E. Galvez, J.A. Connolly, C.E. Manning. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature. 2016; 539(7629): 420-424.
[28]   D. Dolejš. Geochemistry: ions surprise in Earth’s deep fluids. Nature. 2016; 539(7629): 362-364.
[29]   S. Shirey, P. Cartigny, D. Frost, S. Keshav, F. Nestola, G. Pearson, et al.. Diamonds and the geology of mantle carbon. Rev Mineral Geochem. 2013; 75: 355-421.
[30]   E.M. Smith, S.B. Shirey, F. Nestola, E.S. Bullock, J. Wang, S.H. Richardson, et al.. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science. 2016; 354(6318): 1403-1405.
[31]   Y. Weiss, J. McNeill, D.G. Pearson, G.M. Nowell, C.J. Ottley. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature. 2015; 524(7565): 339-342.
[32]   D.G. Pearson, F.E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M.T. Hutchison, et al.. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature. 2014; 507(7491): 221-224.
[33]   F. Nestola, N. Korolev, M. Kopylova, N. Rotiroti, D.G. Pearson, M.G. Pamato, et al.. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature. 2018; 555(7695): 237-241.
[34]   E.M. Smith, S.B. Shirey, S.H. Richardson, F. Nestola, E.S. Bullock, J. Wang, et al.. Blue boron-bearing diamonds from Earth’s lower mantle. Nature. 2018; 560(7716): 84-87.
[35]   J.M. de Moor, A. Aiuppa, G. Avard, H. Wehrmann, N. Dunbar, C. Muller, et al.. Turmoil at Turrialba Volcano (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J Geophys Res Solid Earth. 2016; 121(8): 5761-5775.
[36]   P. Allard, A. Aiuppa, P. Bani, N. Métrich, A. Bertagnini, P.J. Gauthier, et al.. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J Volcanol Geotherm Res. 2015; 304: 378-402.
[37]   S.F. Foley, T.P. Fischer. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat Geosci. 2017; 10(12): 897-902.
[38]   H. Lee, J.D. Muirhead, T.P. Fischer, C.J. Ebinger, S.A. Kattenhorn, Z.D. Sharp, et al.. Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci. 2016; 9: 145-149.
[39]   J.A. Hunt, A. Zafu, T.A. Mather, D.M. Pyle, P.H. Barry. Spatially variable CO2 degassing in the Main Ethiopian Rift: implications for magma storage, volatile transport and rift-related emissions. Geochem Geophys Geosyst. 2017; 18(10): 3714-3737.
[40]   S. Brune, S.E. Williams, R.D. Müller. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci. 2017; 10(12): 941-946.
[41]   M. Le Voyer, K.A. Kelley, E. Cottrell, E.H. Hauri. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat Commun. 2017; 8: 14062.
[42]   A. Aiuppa, T. Fischer, T. Plank, P. Robidoux, R. Di Napoli. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci Rev. 2017; 168: 24-47.
[43]   E. Mason, M. Edmonds, A.V. Turchyn. Remobilization of crustal carbon may dominate volcanic arc emissions. Science. 2017; 357(6348): 290-294.
[44]   P.B. Kelemen, C.E. Manning. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA. 2015; 112(30): E3997-E4006.
[45]   L. Johansson, S. Zahirovic, R.D. Müller. The interplay between the eruption and weathering of Large Igneous Provinces and the deep-time carbon cycle. Geophys Res Lett. 2018; 45(11): 5380-5389.
[46]   J. Pall, S. Zahirovic, S. Doss, R. Hassan, K.J. Matthews, J. Cannon, et al.. The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian. Clim Past. 2018; 14(6): 857-870.
[47]   R.D. Müller, A. Dutkiewicz. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv. 2018; 4(2): q0500.
[48]   T. Keller, R. Katz. The role of volatiles in reactive melt transport in the asthenosphere. J Petrol. 2016; 57(6): 1073-1108.
[49]   T. Keller, R. Katz, M. Hirschmann. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet Sci Lett. 2017; 464: 55-68.
[50]   E.D. Young, D. RumbleIII, P. Freedman, M. Mills. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int J Mass Spectrom. 2016; 401: 1-10.
[51]   E.D. Young, I.E. Kohl, B. Sherwood Lollar, G. Etiope, D. Rumble, S. Li, et al.. The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim Cosmochim Acta. 2017; 203: 235-264.
[52]   D.T. Wang, E.P. Reeves, J.M. McDermott, J.S. Seewald, S. Ono. Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochim Cosmochim Acta. 2018; 223: 141-158.
[53]   S. Ono, D.T. Wang, D.S. Gruen, B. Sherwood Lollar, M.S. Zahniser, B.J. McManus, et al.. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal Chem. 2014; 86(13): 6487-6494.
[54]   D.T. Wang, D.S. Gruen, B. Sherwood Lollar, K.U. Hinrichs, L.C. Stewart, J.F. Holden, et al.. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane. Science. 2015; 348(6233): 428-431.
[55]   T. Le, A. Striolo, C.H. Turner, D.R. Cole. Confinement effects on carbon dioxide methanation: a novel mechanism for abiotic methane formation. Sci Rep. 2017; 7(1): 9021.
[56]   T.M. McCollom. Abiotic methane formation during experimental serpentinization of olivine. Proc Natl Acad Sci USA. 2016; 113(49): 13965-13970.
[57]   G. Etiope, E. Ifandi, M. Nazzari, M. Procesi, B. Tsikouras, G. Ventura, et al.. Widespread abiotic methane in chromitites. Sci Rep. 2018; 8(1): 8728.
[58]   G.L. Früh-Green, B.N. Orcutt, S.L. Green, C. Cotterill, S. Morgan, N. Akizawa, et al.. Expedition 357 summary. Proceed Inter Ocean Discov Prog. 2017; 375.
[59]   B. Ménez, C. Pisapia, M. Andreani, F. Jamme, Q.P. Vanbellingen, A. Brunelle, et al.. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature. 2018; 564(7734): 59-63.
[60]   G. Holland, B. Sherwood Lollar, L. Li, G. Lacrampe-Couloume, G.F. Slater, C.J. Ballentine. Deep fracture fluids isolated in the crust since the Precambrian era. Nature. 2013; 497(7449): 357-360.
[61]   B. Sherwood Lollar, T.C. Onstott, G. Lacrampe-Couloume, C.J. Ballentine. The contribution of the Precambrian continental lithosphere to global H2 production. Nature. 2014; 516(7531): 379-382.
[62]   J.H. Waite, C.R. Glein, R.S. Perryman, B.D. Teolis, B.A. Magee, G. Miller, et al.. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science. 2017; 356(6334): 155-159.
[63]   F. Postberg, N. Khawaja, B. Abel, G. Choblet, C.R. Glein, M.S. Gudipati, et al.. Macromolecular organic compounds from the depths of Enceladus. Nature. 2018; 558(7711): 564-568.
[64]   F. Inagaki, K.U. Hinrichs, Y. Kubo, M.W. Bowles, V.B. Heuer, W.L. Hong, et al.. Exploring deep microbial life in coal-bearing sediment down to ∼2.5 km below the ocean floor. Science. 2015; 349(6246): 420-424.
[65]   E. Trembath-Reichert, Y. Morono, A. Ijiri, T. Hoshino, K.S. Dawson, F. Inagaki, et al.. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc Nat Acad Sci USA. 2017; 114(44): E9206-E9215.
[66]   S. D’Hondt, F. Inagaki, C. Zarikian, L.J. Abrams, N. Dubois, T. Engelhardt, et al.. Presence of oxygen and aerobic communities from seafloor to basement in deep-sea sediment. Nat Geosci. 2015; 8(4): 299-304.
[67]   P. Starnawski, T. Bataillon, T.J.G. Ettema, L.M. Jochum, L. Schreiber, X. Chen, et al.. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017; 114(11): 2940-2945.
[68]   J. Reveillaud, E. Reddington, J. McDermott, C. Algar, J.L. Meyer, S. Sylva, et al.. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol. 2016; 18(6): 1970-1987.
[69]   Y. He, M. Li, V. Perumal, X. Feng, J. Fang, J. Xie, et al.. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol. 2016; 1(6): 16035.
[70]   R.E. Anderson, J. Reveillaud, E. Reddington, T.O. Delmont, A.M. Eren, J.M. McDermott, et al.. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun. 2017; 8(1): 1114.
[71]   S.E. Ruff, J.F. Biddle, A.P. Teske, K. Knittel, A. Boetius, A. Ramette. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA. 2015; 112(13): 4015-4020.
[72]   C. Magnabosco, L.H. Lin, H. Dong, M. Bomberg, W. Ghiorse, H. Stan-Lotter, et al.. The biomass and biodiversity of the continental subsurface. Nat Geosci. 2018; 11(10): 707-717.
[73]   M.C.Y. Lau, T.L. Kieft, O. Kuloyo, B. Linage-Alvarez, E. van Heerden, M.R. Lindsay, et al.. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci USA. 2016; 113(49): E7927-E7936.
[74]   G. Borgonie, A. García-Moyano, D. Litthauer, W. Bert, A. Bester, E. van Heerden, et al.. Nematoda from the terrestrial deep subsurface of South Africa. Nature. 2011; 474(7349): 79-82.
[75]   G. Borgonie, B. Linage-Alvarez, A.O. Ojo, S.O.C. Mundle, L.B. Freese, C. Van Rooyen, et al.. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nat Commun. 2015; 6(1): 8952.
[76]   R.A. Daly, M.A. Borton, M.J. Wilkins, D.W. Hoyt, D.J. Kountz, R.A. Wolfe, et al.. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol. 2016; 1: 16146.
[77]   A. Smith, M. Fisk, A. Thurber, G.E. Flores, O. Mason, R. Popa, et al.. Deep crustal communities of the Juan de Fuca Ridge are governed by mineralogy. Geomicrobiol J. 2016; 147-156.
[78]   A.C. Bourges, O.E. Torres Montaguth, A. Ghosh, W.M. Tadesse, N. Declerck, A. Aertsen, et al.. High pressure activation of the Mrr restriction endonuclease in Escherichia coli involves tetramer dissociation. Nucleic Acids Res. 2017; 45(9): 5323-5332.
[79]   M. Gao, B. Harish, M. Berghaus, R. Seymen, L. Arns, S.A. McCallum, et al.. Temperature and pressure limits of guanosine monophosphate self-assemblies. Sci Rep. 2017; 7(1): 9864.
Related
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering