Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 366 -371
Views & Comments |
New Developments in the Calorimetry of High-Temperature Materials
Alexandra Navrotsky
Peter A. Rock Thermochemistry Laboratory & NEAT ORU, University of California, Davis, CA 95616, USA
Issue Date: 11 July 2019
E-mail this article
E-mail Alert
Articles by authors
Alexandra Navrotsky
Cite this article:   
Alexandra Navrotsky. New Developments in the Calorimetry of High-Temperature Materials[J]. Engineering, 2019, 5(3): 366 -371 .
URL:     OR
[1]   A. Levchenko, L. Marchin, P.L. Parlouer, A. Navrotsky. The new high-temperature Setaram AlexSYS calorimeter and thermochemistry of α-CuMnO4. ITAS Bull. 2009; 2: 91-97.
[2]   A. Navrotsky. Progress and new directions in calorimetry: a 2014 perspective. J Am Ceram. 2014; 97(11): 3349-3359.
[3]   Q. Shi, J. Boerio-Goates, B.F. Woodfield. An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn. 2011; 43(8): 1263-1269.
[4]   Q.J. Hong, S.V. Ushakov, A. Navrotsky, A. van de Walle. Combined computational and experimental investigation of the refractory properties of La2Zr2O7. Acta Mater. 2015; 84: 275-282.
[5]   L. Zhang, J.M. Solomon, M.D. Asta, A. Navrotsky. A combined calorimetric and computational study of the energetics of rare earth substituted UO2 systems. Acta Mater. 2015; 97: 191-198.
[6]   D. Kapush, S.V. Ushakov, A. Navrotsky, Q. Hong, H. Liu, A. van de Walle. A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000 °C using drop-n-catch calorimetry and first principles calculations. Acta Mater. 2017; 124: 204-209.
[7]   X. Luo, W. Zhou, S.V. Ushakov, A. Navrotsky, A.A. Demkov. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009; 80(13): 134119
[8]   P.A.G. O’Hare. Combustion calorimetry. In: editor. Characterization of materials. New Jersey: John Wiley & Sons, Inc.; 2003. p. 373-383.
[9]   V.Y. Leonidov, P.A.G. O’Hare. Fluorine combustion calorimetry: progress in recent years and possibilities of further development. Pure Appl Chem. 1992; 64(1): 103-110.
[10]   O.J. Kleppa, Q. Guo, S.V. Meschel. Recent work in high-temperature reaction calorimetry of intermetallic compounds and related phases. In: editor. Applications of thermodynamics in the synthesis and processing of materials. Pittsburgh: Minerals, Metals & Materials Society; 1995. p. 285-302.
[11]   C. Colinet, A. Pasturel. High-temperature solution calorimetry. In: editor. Experimental thermodynamics. New Jersey: John Wiley & Sons, Inc.; 1994. p. 89-129.
[12]   E.H.P. Cordfunke, W. Ouweltjes. Solution calorimetry for the determination of enthalpies of reaction of inorganic substances at 298.15 K. In: editor. Experimental thermodynamics. New Jersey: John Wiley & Sons, Inc.; 1994. p. 25-42.
[13]   E.F. WestrumJr.. Adiabatic calorimetric determination of phase behavior. Fluid Phase Equilib. 1986; 27: 221-231.
[14]   M.J. Blandamer, P.M. Cullis, P.T. Gleeson. Three important calorimetric applications of a classic thermodynamic equation. Chem Soc Rev. 2003; 32(5): 264-267.
[15]   T. Matsuo. Some new aspects of adiabatic calorimetry at low temperatures. Thermochim Acta. 1990; 163: 57-70.
[16]   J. Bartolome, F. Bartolome. Specific heat below 1 K. Some examples in magnetism. Phase Transit. 1997; 64(1–2): 57-86.
[17]   Y. Matsumoto, S. Nakatsuji. Relaxation calorimetry at very low temperatures for systems with internal relaxation. Rev Sci Instrum. 2018; 89(3): 033908
[18]   D.W. Cooke, K.J. Michel, F. Hellman. Thermodynamic measurements of submilligram bulk samples using a membrane-based “calorimeter on a chip”. Rev Sci Instrum. 2008; 79(5): 053902
[19]   D.R. Queen, F. Hellman. Thin film nanocalorimeter for heat capacity measurements of 30 nm films. Rev Sci Instrum. 2009; 80(6): 063901
[20]   A. Navrotsky, M. Dorogova, F. Hellman, D.W. Cooke, B.L. Zink, C.E. Lesher, et al.. Application of calorimetry on a chip to high-pressure materials. Proc Natl Acad Sci USA. 2007; 104(22): 9187-9191.
[21]   E. Dachs, A. Benisek. A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics. 2011; 51(8): 460-464.
[22]   G. Hohne, W. Hemminger, H.J. Flammersheim. Differential scanning calorimetry: an introduction for practitioners.
[23]   A. Navrotsky, S.V. Ushakov. Hot matters—experimental methods for high-temperature property measurement. Am Ceram Soc Bull. 2017; 96: 22-28.
[24]   S.V. Ushakov, A. Navrotsky. Direct measurements of fusion and phase transition enthalpies in lanthanum oxide. J Mater Res. 2011; 26(7): 845-847.
[25]   A.V. Radha, S.V. Ushakov, A. Navrotsky. Thermochemistry of lanthanum zirconate pyrochlore. J Mater Res. 2009; 24(11): 3350-3357.
[26]   S.V. Ushakov, A. Navrotsky. Direct measurement of fusion enthalpy of LaAlO3 and comparison of energetics of melt, glass and amorphous thin films. J Am Ceram Soc. 2014; 97(5): 1589-1594.
[27]   S.V. Ushakov, A. Navrotsky. Experimental approaches to the thermodynamics of ceramics above 1500 °C. J Am Ceram Soc. 2012; 95(5): 1463-1482.
[28]   S.V. Ushakov, A. Shvarev, T. Alexeev, D. Kapush, A. Navrotsky. Drop-and-catch (DnC) calorimetry using aerodynamic levitation and laser heating. J Am Ceram Soc. 2017; 100(2): 754-760.
[29]   J. Shamblin, M. Feygenson, J. Neuefeind, C.L. Tracy, F. Zhang, S. Finkeldei, et al.. Probing disorder in isometric pyrochlore and related complex oxides. Nat Mater. 2016; 15(5): 507-511.
[30]   J.M. Solomon, J. Shamblin, M. Lang, A. Navrotsky, M. Asta. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE = Ho, Y, Gd, Nd, La). Sci Rep. 2016; 6(1): 38772.
[31]   P. Zietlow, T. Beirau, B. Mihailova, L.A. Groat, T. Chudy, A. Shelyug, et al.. Thermal annealing of natural, radiation-damaged pyrochlore. Z Kristallogr. 2016; 232: 1-3.
[32]   S. Finkeldei, P. Kegler, P. Kowalski, C. Schreinemachers, F. Brandt, A. Bukaemskiy, et al.. Composition dependent order-disorder transition in NdxZr1-xO2–0.5x pyrochlores: a combined structural, calorimetric and ab initio modeling study. Acta Mater. 2017; 125: 166-176.
[33]   C.K. Chung, J. Shamblin, E. O’Quinn, A. Shelyug, I. Gussev, M.K. Lang, et al.. Thermodynamic and structural evolution of Dy2Ti2O7 pyrochlore after swift heavy ion irradiation. Acta Mater. 2018; 145: 227-234.
[34]   P.S. Maram, S.V. Ushakov, R.J.K. Weber, C.J. Benmore, A. Navrotsky. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids—a thermodynamic perspective. Sci Rep. 2018; 8(1): 10658.
[35]   K.B. Helean, S.V. Ushakov, C.E. Brown, A. Navrotsky, J. Lian, R.C. Ewing, et al.. Formation enthalpies of rare earth titanate pyrochlores. J Solid State Chem. 2004; 177(6): 1858-1866.
[36]   J. Lian, K.B. Helean, B.J. Kennedy, L.M. Wang, A. Navrotsky, R.C. Ewing. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J Phys Chem B. 2006; 110(5): 2343-2350.
[37]   S.V. Ushakov, A. Navrotsky, J.A. Tangeman, K.B. Helean. Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. J Am Ceram Soc. 2007; 90(4): 1171-1176.
[38]   A. Navrotsky, O.J. Kleppa. The thermodynamics of cation distributions in simple spinels. J Inorg Nucl Chem. 1967; 29(11): 2701-2714.
[39]   Y. Li, P.M. Kowalski, G. Beridze, A.R. Birnie, S. Finkeldei, D. Bosbach. Defect formation energies in A2B2O7 pyrochlores. Scr Mater. 2015; 107: 18-21.
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.