Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 471 -478     https://doi.org/10.1016/j.eng.2019.03.002
Research Deep Matter & Energy—Article |
Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia
Nikolay V. Sobolevab(), Anatoly A. Tomilenkoa, Taras A. Bul'baka, Alla M. Logvinovaab
a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
b Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia
Abstract
Abstract  Abstract

Volatile components in diamonds, associated garnet (pyrope), and olivine from two extremely rare xenoliths of diamondiferous peridotites recovered from the Udachnaya kimberlite pipe in Yakutia, Russia, were analyzed by gas chromatography–mass spectrometry (GC–MS) using a Focus DSQ II Series Single Quadrupole GC–MS (Thermo Scientific, USA). These xenoliths are pyrope lherzolite and pyrope dunite based upon compositions of coexisting minerals. Unlike the pyrope lherzolite, which contained pyrope with moderate calcium (Ca)-component content (about 15 mol%), the dunite contained subcalcic chromium (Cr)-pyrope with low Ca-component content (less than 10 mol%). All investigated minerals contained dominating hydrocarbons and their derivatives represented by aliphatic (paraffins, olefins), cyclic (naphthenes, arenes), oxygenated (alcohols, ethers), and heterocyclic (dioxanes, furans) hydrocarbons; nitrogenated, chlorinated, and sulfonated compounds; carbon dioxide (CO2); and water (H2O). The relative concentration (rel%) of total hydrocarbon was 79.7 rel% for diamonds, 69.1 rel% for garnet, and 92.6 rel% for olivine, with a general amount of components ranging from 161 to 206. New data on volatiles in diamonds, associated garnet, and olivine suggest the presence of a wide spectrum of hydrocarbons along with nitrogen (N2), CO2, and H2O in some upper mantle areas.

Keywords Diamond      Volatiles      Hydrocarbons      Pyrope      Olivine      Inclusions     
Corresponding Authors: Nikolay V. Sobolev   
Issue Date: 11 July 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nikolay V. Sobolev
Anatoly A. Tomilenko
Taras A. Bul'bak
Alla M. Logvinova
Cite this article:   
Nikolay V. Sobolev,Anatoly A. Tomilenko,Taras A. Bul'bak, et al. Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia[J]. Engineering, 2019, 5(3): 471 -478 .
URL:  
http://www.engineering.org.cn/EN/10.1016/j.eng.2019.03.002     OR     http://www.engineering.org.cn/EN/Y2019/V5/I3/471
References
[1]   A.A. Tomilenko, A.I. Chepurov, Y.N. Pal’yanov, L.N. Pokhilenko, A.P. Shebanin. Volatile components in the upper mantle (from data on fluid inclusions). Russ Geol Geophys. 1997; 38(1): 294-303.
[2]   A.A. Tomilenko, A.L. Ragozin, V.S. Shatsky, A.P. Shebanin. Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci. 2001; 379(5): 571-574.
[3]   A.A. Tomilenko, S.V. Kovyazin, L.N. Pokhilenko, N.V. Sobolev. Primary hydrocarbon inclusions in garnet of diamondiferous eclogite from the Udachnaya kimberlite pipe, Yakutia. Dokl Earth Sci. 2009; 426(4): 695-698.
[4]   A.M. Logvinova, R. Wirth, A.A. Tomilenko, V.P. Afanas’ev, N.V. Sobolev. The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian platform. Russ Geol Geophys. 2011; 52(11): 1286-1297.
[5]   N.V. Sobolev, A.M. Logvinova, E.N. Fedorova, L.I. Luk’yanova, R. Wirth, A.A. Tomilenko, et al.. Mineral and fluid inclusions in the diamonds from the Ural placers, Russia.
[6]   O. Navon, R. Wirth, C. Schmidt, B.M. Jablon, A. Schreiber, S. Emmanuel. Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: exsolution at the base of the transition zone. Earth Planet Sci Lett. 2017; 464: 237-247.
[7]   E.S. Izraeli, J.W. Harris, O. Navon. Raman barometry of diamond formation. Earth Planet Sci Lett. 1999; 123(3): 351-360.
[8]   O. Tschauner, S. Huang, E. Greenberg, V.B. Prakapenka, C. Ma, G.R. Rossman, et al.. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science. 2018; 359(6380): 1136-1139.
[9]   N.V. Sobolev, B.A. Fursenko, S.V. Goryainov, J. Shu, R.J. Hemley, A. Mao, et al.. Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer. PNAS. 2000; 97(22): 11875-11879.
[10]   L.D. Bardukhinov, Z.V. Spetsius, R.V. Monkhorov. Coesite inclusions in Yakutian diamonds. Dokl Earth Sci. 2016; 470(2): 1059-1062.
[11]   A.A. Tomilenko, T.A. Bul’bak, M.O. Khomenko, D.V. Kuzmin, N.V. Sobolev. The composition of volatile components in olivines from Yakutian kimberlites of various ages: evidence from gas chromatography-mass spectrometry. Dokl Earth Sci. 2016; 468(2): 626-631.
[12]   A.A. Tomilenko, T.A. Bul’bak, L.N. Pokhilenko, D.V. Kuzmin, N.V. Sobolev. Peculiarities of the composition of volatile components in picroilmenites from Yakutian kimberlites of various ages (by gas chromatography-mass spectrometry). Dokl Earth Sci. 2016; 469(1): 690-694.
[13]   E.M. Smith, S.B. Shirey, F. Nestola, E.S. Bullock, J. Wang, S.H. Richardson, et al.. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science. 2016; 354(6318): 1403-1405.
[14]   B.M. Jablon, O. Navon. Most diamonds were created equal. Earth Planet Sci Lett. 2016; 443: 41-47.
[15]   A.A. Tomilenko, T.A. Bul’bak, A.M. Logvinova, V.M. Sonin, N.V. Sobolev. The composition features of volatile components in diamonds from the placers in the northeastern part of the Siberian platform by gas chromatography–mass spectrometry. Dokl Earth Sci. 2018; 481(1): 955-959.
[16]   A.A. Tomilenko, A.I. Chepurov, Yu.N. Pal’yanov, A.P. Shebanin, N.V. Sobolev. Hydrocarbon inclusions in synthetic diamonds. Eur J Miner.. 1998; 10(6): 1135-1141.
[17]   A.A. Tomilenko, D.V. Kuzmin, T.A. Bul’bak, N.V. Sobolev. Primary melt and fluid inclusions in regenerated crystals and phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, Yakutia: the problem of the kimberlite melt. Dokl Earth Sci. 2017; 475(2): 949-952.
[18]   E. Roedder. Fluid inclusions. Reviews in mineralogy.
[19]   S.B. Shirey, P. Cartigny, D.J. Frost, S. Keshaw, F. Nestola, P. Nimis, et al.. Diamonds and the geology of mantle carbon. Rev Miner Geochem. 2013; 75(1): 355-421.
[20]   V.M. Sonin, T.A. Bul’bak, E.I. Zhimulev, A.A. Tomilenko, A.I. Chepurov, N.P. Pokhilenko. Synthesis of heavy hydrocarbons under P-T conditions of the Earth’s upper mantle. Dokl Earth Sci. 2014; 454(1): 32-36.
[21]   A.A. Tomilenko, A.I. Chepurov, V.M. Sonin, T.A. Bul’bak, E.I. Zhimulev, A.A. Chepurov, et al.. The synthesis of methane and heavier hydrocarbons in the system graphite-iron serpentine at 2 and 4 GPa and 1200 °C. High Temp High Press. 2015; 44(6): 451-465.
[22]   A.G. Sokol, A.A. Tomilenko, T.A. Bul’bak, NV. Sobolev. Synthesis of hydrocarbons by CO2 fluid conversion with hydrogen: experimental modeling at 7.8 GPa and 1350 °C. Dokl Earth Sci. 2017; 477(2): 1483-1487.
[23]   A.G. Sokol, A.A. Tomilenko, T.A. Bul’bak, A.N. Kruk, P.A. Zaikin, I.A. Sokol, et al.. The Fe–C–O–H–N system at 6.3–7.8 GPa and 1200–1400 °C: implications for deep carbon and nitrogen cycles. Contrib Miner Petrol. 2018; 173(6): 47.
[24]   V.S. Sobolev. Formation conditions of diamond deposits. Geol Geofiz (Novosib). 1960; 1(1): 7-23. Russian
[25]   A.M. Logvinova, L.A. Taylor, E.N. Fedorova, A.P. Yelisseyev, R. Wirth, G. Howarth, et al.. A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe, Yakutia: role of subduction in diamond formation. Russ Geol Geophys. 2015; 56(1–2): 306-320.
[26]   N.V. Sobolev, A.A. Tomilenko, T.A. Bul’bak, A.M. Logvinova. Composition of volatile components in diamonds and garnets from unique diamondiferous peridotite of the Udachnaya pipe, Yakutia, Russia.
[27]   N.V. Sobolev, E.M. Galimov, I.N. Ivanovskaia, E.S. Yefimova. Isotopic composition of carbon from diamonds containing crystalline inclusions. Dokl Akad Nauk SSSR. 1979; 249(5): 1217-1220.
[28]   P. Cartigny. Stables isotopes and the origin of diamond. Elements. 2005; 1(2): 79-84.
[29]   V.S. Sobolev, N.V. Sobolev. New evidence on subduction to great depths of the eclogitized crustal rocks. Dokl Akad Nauk SSSR. 1980; 250: 683-685. Russian
[30]   N.V. Sobolev, Y.G. Lavrent’ev, L.N. Pospelova, E.V. Sobolev. Chrome pyropes from Yakutian diamonds. Dokl Akad Nauk SSSR. 1969; 189: 162-165.
[31]   V.S. Sobolev, B.S. Nai, N.V. Sobolev, Y.G. Lavrentev, L.N. Pospelova. Xenoliths of diamond-bearing pyrope serpentinites from the Aikhal pipe, Yakutia. Dokl Akad Nauk SSSR. 1969; 188(5): 141-143.
[32]   I.P. Ilupin, E.S. Efimova, N.V. Sobolev, L.V. Usova, D.I. Savrasov, A.D. Kharkiv. Inclusions in diamond from diamondiferous dunite. Dokl Akad Nauk SSSR. 1982; 264: 454-456.
[33]   N.P. Pokhilenko, D.G. Pearson, F.R. Boyd, N.V. Sobolev. Megacrystalline dunites and peridotites: hosts for Siberian diamonds. Annu Rep Director Geophys Lab Carnegie Inst Washington. 1991; 1990–1991: 11-18.
[34]   A.G. Sokol, A.A. Tomilenko, T.A. Bul’bak, G.A. Palyanova, I.A. Sokol, Y.N. Palyanov. Carbon and nitrogen speciation in N-poor C–O–H–N Fluids at 6.3 GPa and 1100–1400 °C. Sci Rep. 2017; 7(1): 706.
[35]   A.G. Sokol, Y.N. Palyanov, A.A. Tomilenko, T.A. Bul’bak, G.A. Palyanova. Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa. Earth Planet Sci Lett. 2017; 60: 234-243.
[36]   C. Zhang, Z. Duan. A model for C–O–H fluid in the Earth’s mantle. Geochim Cosmochim Acta. 2009; 73(7): 2089-2102.
[37]   M.L. Frezzotti, J.M. Huizenga, R. Compagnoni, J. Selverstone. Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochim Cosmochim Acta. 2014; 143: 68-86.
[38]   D.A. Sverjensky, F. Huang. Diamond formation due to a pH drop during fluid–rock interactions. Nat Commun. 2015; 6: 8702.
[39]   N.V. Sobolev, A.V. Sobolev, A.A. Tomilenko, D.V. Kuz’min, S.A. Grakhanov, V.G. Batanova, et al.. Prospects of searching for diamondiferous kimberlites in the northeastern Siberian platform. Russ Geol Geophys. 2018; 59(10): 1385-1399.
[40]   M.B. Kamenetsky, A.V. Sobolev, V.S. Kamenetsky, R. Maas, L.V. Danyushevsky, R. Thomas, et al.. Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology. 2004; 32(10): 845-848.
[41]   N.V. Sobolev, A.M. Logvinova, E.S. Efimova. Syngenetic phlogopite inclusions in kimberlites-hosted diamonds: implications for role of volatiles in diamond formation. Russ Geol Geophys. 2009; 50(12): 1234-1248.
[42]   D.A. Sverjensky, V. Stagno, F. Huang. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci. 2014; 7(12): 909-913.
[43]   D. Dolejš. Geochemistry: ions surprise in Earth’s deep fluids. Nature. 2016; 539(7629): 362-364.
Related
[1] Li Zhang, Hongsheng Yuan, Yue Meng, Ho-Kwang Mao. Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior[J]. Engineering, 2019, 5(3): 441 -447 .
[2] Wendy L. Mao, Yu Lin, Yijin Liu, Jin Liu. Applications for Nanoscale X-ray Imaging at High Pressure[J]. Engineering, 2019, 5(3): 479 -489 .
[3] Takayuki Ishii, Zhaodong Liu, Tomoo Katsura. A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils[J]. Engineering, 2019, 5(3): 434 -440 .
[4] Dongyang Lian, Jingsui Yang. Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle[J]. Engineering, 2019, 5(3): 406 -420 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering