Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 505 -509     https://doi.org/10.1016/j.eng.2019.03.001
Research Deep Matter & Energy—Article |
Structural Studies on the Cu–H System under Compression
Jack Binnsa, Miriam Peña-Alvarezb, Mary-Ellen Donnellya, Eugene Gregoryanzabc, Ross T. Howiea, Philip Dalladay-Simpsona()
a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
c Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract
Abstract  Abstract

Hydrogen chemistry at extreme pressures is currently subject to extensive research due to the observed and predicted enhanced physical properties when hydrogen is incorporated in numerous binary systems. Despite the high reactivity of hydrogen, the noble metals (Cu, Ag, and Au) display an outstanding resilience to hydride formation, with no reports of a stable compound with a hydrogen molar ratio ≥ 1 at room temperature. Here, through extreme compression and in situ laser heating of pure copper in a hydrogen atmosphere, we explore the affinity of these elements to adopt binary compounds. We report on the phase behavior and stabilities in the Cu–H system, analyzed via synchrotron X-ray diffraction, up to pressures of 50 GPa. We confirm the existence of the previously reported γ0-CuH0.15, γ1-CuH0.5, and ε-Cu2H phases. Most notably, we report the highest hydrogen-content noble-metal hydride stable at room temperature to date: γ2-CuH0.65, which was synthesized through laser heating. This study furthers our understanding of hydrogen-transition metal chemistry and may find applicability in future hydrogen-storage applications.

Keywords High pressure      Hydrogen storage      Noble metal chemistry     
Corresponding Authors: Philip Dalladay-Simpson   
Issue Date: 11 July 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jack Binns
Miriam Pe?a-Alvarez
Mary-Ellen Donnelly
Eugene Gregoryanz
Ross T. Howie
Philip Dalladay-Simpson
Cite this article:   
Jack Binns,Miriam Pe?a-Alvarez,Mary-Ellen Donnelly, et al. Structural Studies on the Cu–H System under Compression[J]. Engineering, 2019, 5(3): 505 -509 .
URL:  
http://www.engineering.org.cn/EN/10.1016/j.eng.2019.03.001     OR     http://www.engineering.org.cn/EN/Y2019/V5/I3/505
References
[1]   A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015; 525: 73-76.
[2]   M.S. Somayazulu, L.W. Finger, R.J. Hemley, H. Mao. High-pressure compounds in methane-hydrogen mixtures. Science. 1996; 271(5254): 1400-1402.
[3]   J. Binns, P. Dalladay-Simpson, M. Wang, G.J. Ackland, E. Gregoryanz, R.T. Howie. Formation of H2-rich iodine-hydrogen compounds at high pressure. Phys Rev B. 2018; 97(2): 024111.
[4]   R.T. Howie, C.L. Guillaume, T. Scheler, A.F. Goncharov, E. Gregoryanz. Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett. 2012; 108(12): 125501.
[5]   P. Dalladay-Simpson, R.T. Howie, E. Gregoryanz. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature. 2016; 529(7584): 63-67.
[6]   R.T. Howie, R. Turnbull, J. Binns, M. Frost, P. Dalladay-Simpson, E. Gregoryanz. Formation of xenon-nitrogen compounds at high pressure. Sci Rep. 2016; 6(1): 34896.
[7]   J. Binns, P. Dalladay-Simpson, M. Wang, E. Gregoryanz, R.T. Howie. Enhanced reactivity of lithium and copper at high pressure. J Phys Chem Lett. 2018; 9(11): 3149-3153.
[8]   B. Li, Y. Ding, D.Y. Kim, R. Ahuja, G. Zou, H.K. Mao. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc Natl Acad Sci USA. 2011; 108(46): 18618-18621.
[9]   D.Y. Kim, R.H. Scheicher, C.J. Pickard, R.J. Needs, R. Ahuja. Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen. Phys Rev Lett. 2011; 107(11): 117002.
[10]   V.E. Antonov. Phase transformations, crystal and magnetic structures of high-pressure hydrides of d-metals. J Alloys Compd. 2002; 330–332: 110-116.
[11]   R. Burtovyy, M. Tkacz. High-pressure synthesis of a new copper hydride from elements. Solid State Commun. 2004; 131(3–4): 169-173.
[12]   C. Donnerer, T. Scheler, E. Gregoryanz. High-pressure synthesis of noble metal hydrides. J Chem Phys. 2013; 138(13): 134507.
[13]   A. Wurtz. On copper hydride. C R Hebd Acad Sci Paris. 1844; 18: 702. French
[14]   P. Hasin, Y. Wu. Sonochemical synthesis of copper hydride (CuH). Chem Commun. 2012; 48(9): 1302-1304.
[15]   Y. Fukai. The metal-hydride system. 2nd ed.
[16]   N.P. Fitzsilmons, W. Jones, P.J. Herley. Studies of copper hydride. J Chem Soc. 1995; 91: 713-718.
[17]   C.M. Pépin, G. Geneste, A. Dewaele, M. Mezouar, P. Loubeyre. Synthesis of FeH5: a layered structure with atomic hydrogen slabs. Science. 2017; 357(6349): 382-385.
[18]   M. Wang, J. Binns, M.E. Donnelly, M. Peña-Alvarez, P. Dalladay-Simpson, R.T. Howie. High pressure synthesis and stability of cobalt hydrides. J Chem Phys. 2018; 148(14): 144310.
[19]   Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, V. Prakapenka. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA. 2007; 104(22): 9182-9186.
[20]   H.K. Mao, J. Xu, P.M. Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res. 1986; 91(B5): 4673.
[21]   A.F. Goncharov, V.B. Prakapenka, V.V. Struzhkin, I. Kantor, M.L. Rivers, D.A. Dalton. X-ray diffraction in the pulsed laser heated diamond anvil cell. Rev Sci Instrum. 2010; 81(11): 113902.
[22]   C. Prescher, V.B. Prakapenka. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res. 2015; 35(3): 223-230.
[23]   V. Petříček, M. Dušek, L. Palatinus. Crystallographic computing system JANA2006: general features. Z Kristallogr Cryst Mater. 2014; 229(5): 345-352.
[24]   B. Baranowski, K. Bocheńska. The free energy and entropy of formation of nickel hydride. Z Phys Chem (NF). 1965; 45(8): 140-152.
[25]   E.G. Ponyatovskiĭ, V.E. Antonov, I.T. Belash. Properties of high pressure phases in metal-hydrogen systems. Sov Phys Usp. 1982; 25(8): 596-619.
[26]   V.B. Prakapenka, A. Kubo, A. Kuznetsov, A. Laskin, O. Shkurikhin, P. Dera, et al.. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res. 2008; 28(3): 225-235.
[27]   A. Dewaele, P. Loubeyre, M. Mezouar. Equations of state of six metals above 94 GPa. Phys Rev B Condens Matter Mater Phys. 2004; 70(9): 1-8.
[28]   B. Baranowski, S. Majchrzak, T.B. Flanagan. The volume increase of FCC metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents. J Phys F Met Phys. 1971; 1(3): 258-261.
[29]   V.A. Somenkov, V.P. Glazkov, A.V. Irodova, I.V. Kurchotov. Crystal structure and volume effects in the hydrides. J Less Common Met. 1987; 129: 171-180.
[30]   H. Hemmes, A. Driessen, R. Griessen, M. Gupta. Isotope effects and pressure dependence of the Tc of superconducting stoichiometric PdH and PdD synthesized and measured in a diamond anvil cell. Phys Rev B Condens Matter. 1989; 39(7): 4110-4118.
[31]   T. Scheler, O. Degtyareva, M. Marqués, C.L. Guillaume, J.E. Proctor, S. Evans, et al.. Synthesis and properties of platinum hydride. Phys Rev B Condens Matter Mater Phys. 2011; 83(21): 1-5.
[32]   O. Degtyareva, J.E. Proctor, C.L. Guillaume, E. Gregoryanz, M. Hanfland. Formation of transition metal hydrides at high pressures. Solid State Commun. 2009; 149: 1583-1586.
[33]   B. Baranowski, S.M. Filipek. 45 years of nickel hydride—history and perspectives. J Alloys Compd. 2005; 404–406: 2-6.
Related
[1] Li Zhang, Hongsheng Yuan, Yue Meng, Ho-Kwang Mao. Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior[J]. Engineering, 2019, 5(3): 441 -447 .
[2] Wendy L. Mao, Yu Lin, Yijin Liu, Jin Liu. Applications for Nanoscale X-ray Imaging at High Pressure[J]. Engineering, 2019, 5(3): 479 -489 .
[3] Takayuki Ishii, Zhaodong Liu, Tomoo Katsura. A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils[J]. Engineering, 2019, 5(3): 434 -440 .
[4] John S. Tse. First-Principles Methods in the Investigation of the Chemical and Transport Properties of Materials under Extreme Conditions[J]. Engineering, 2019, 5(3): 421 -433 .
[5] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Śliwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering