Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 406 -420     https://doi.org/10.1016/j.eng.2019.02.006
Research Deep Matter & Energy—Review |
Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle
Dongyang Liana, Jingsui Yangab()
a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
b CARMA, Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract
Abstract  Abstract

As reported in our prior work, we have recovered microdiamonds and other unusual minerals, including pseudomorph stishovite, moissanite, qingsongite, native elements, metallic alloys, and some crustal minerals (i.e., zircon, quartz, amphibole, and rutile) from ophiolitic peridotites and chromitites. These ophiolite-hosted microdiamonds display different features than kimberlitic, metamorphic, and meteoritic diamonds in terms of isotopic values and mineral inclusions. The characteristic of their light carbon isotopic composition implies that the material source of ophiolite-hosted diamonds is surface-derived organic matter. Coesite inclusions coexisting with kyanite rimming an FeTi alloy from the Luobusa ophiolite show a polycrystalline nature and a prismatic habit, indicating their origin as a replacement of stishovite. The occurrence in kyanite and coesite with inclusions of qingsongite, a cubic boron nitride mineral, and a high-pressure polymorph of rutile (TiO2 II) point to formation pressures of 10–15 GPa at temperatures ∼1300 °C, consistent with depths greater than 380 km, near the mantle transition zone (MTZ). Minerals such as moissanite, native elements, and metallic alloys in chromite grains indicate a highly reduced environment for ophiolitic peridotites and chromitites. Widespread occurrence of diamonds in ophiolitic peridotites and chromitites suggests that the oceanic mantle may be a more significant carbon reservoir than previously thought. These ophiolite-hosted diamonds have proved that surface carbon can be subducted into the deep mantle, and have provided us with a new window for probing deep carbon cycling.

Keywords Ophiolite-hosted diamond      Coesite      Stishovite      Podiform chromitites      Mantle transition zone     
Corresponding Authors: Jingsui Yang   
Issue Date: 11 July 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dongyang Lian
Jingsui Yang
Cite this article:   
Dongyang Lian,Jingsui Yang. Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle[J]. Engineering, 2019, 5(3): 406 -420 .
URL:  
http://www.engineering.org.cn/EN/10.1016/j.eng.2019.02.006     OR     http://www.engineering.org.cn/EN/Y2019/V5/I3/406
References
[1]   S.E. Haggerty. A diamond trilogy: superplumes, supercontinents, and supernovae. Science. 1999; 285(5429): 851-860.
[2]   T. Henning, F. Salama. Carbon in the universe. Science. 1998; 282(5397): 2204-2210.
[3]   N. Coltice, L. Simon, C. Lécuyer. Carbon isotope cycle and mantle structure. Geophys Res Lett. 2004; 31(5): 325-341.
[4]   R.A. Berner. The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants. Philos Trans R Soc Lond B Biol Sci. 1998; 353(1365): 75-81.
[5]   J.L. Sarmiento, T.M.C. Hughes, R.J. Stouffer, S. Manabe. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature. 1998; 393(6682): 245-249.
[6]   R.A. Berner. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature. 2003; 426(6964): 323-326.
[7]   G.J.A. Retallack. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature. 2001; 411(6835): 287-290.
[8]   P. Deines. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev. 2002; 58(3): 247-248.
[9]   S.S. Shcheka, M. Wiedenbeck, D.J. Frost, H. Keppler. Carbon solubility in mantle minerals. Earth Planet Sci Lett. 2006; 245(3–4): 730-742.
[10]   H. Keppler, M. Wiedenbeck, S.S. Shcheka. Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature. 2003; 424(6947): 414-416.
[11]   Y. Dilek, J. Yang. Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis. Lithosphere. 2018; 10(1): 3-13.
[12]   F. Nestola, N. Korolev, M. Kopylova, N. Rotiroti, D.G. Pearson, M.G. Pamato, et al.. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature. 2018; 555(7695): 237-241.
[13]   M.J. Walter, S.C. Kohn, D. Araujo, G.P. Bulanova, C.B. Smith, E. Gaillou, et al.. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science. 2011; 334(6052): 54-57.
[14]   S.B. Shirey, P. Cartigny, D.J. Frost, S. Keshav, F. Nestola, P. Nimis, et al.. Diamonds and the geology of mantle carbon. Rev Mineral Geochem. 2013; 75(1): 355-421.
[15]   M. Kopylova, L. Bruce, J. Ryder. Diamonds in an Archean greenstone belt: diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada). EGU Gen Assem. 2010; 12: EGU2010-6835
[16]   J. Yang, Z. Xu, L.F. Dobrzhinetskaya, H.W. Green, X. Pei, R. Shi, et al.. Discovery of metamorphic diamonds in central China: an indication of a > 4000 km long zone of deep subduction resulting from multiple continental collisions. Terra Nova. 2003; 15(6): 370-379.
[17]   Y. Ogasawara. Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements. 2005; 1(2): 91-96.
[18]   O.M. Rozen, Y.M. Zorin, A.A. Zayachkovsky. A find of the diamonds linked with eclogites of the Precambrian Kokchetav Massif. Doklady Akademy Nauk USSR. 1972; 203: 674-676. Russian
[19]   R.S. Lewis, T. Ming, J.F. Wacker, E. Anders, E. Steel. Interstellar diamonds in meteorites. Nature. 1987; 326(6109): 160-162.
[20]   G.R. Huss. Meteoritic nanodiamonds: messengers from the stars. Elements. 2005; 1(2): 97-100.
[21]   T.L. Daulton, D.D. Eisenhour, T.J. Bernatowicz, R.S. Lewis, P.R. Buseck. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim Cosmochim Acta. 1996; 60(23): 4853-4872.
[22]   W. Bai, M. Zhou, P.T. Robinson. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibets. Can J Earth Sci. 1993; 30(8): 1650-1659.
[23]   J. Yang, P.T. Robinson, Y. Dilek. Diamond-bearing ophiolites and their geological occurrence. Episodes. 2015; 38(4): 344-364.
[24]   D. Lian, J. Yang, D. Yildirim, W. Wu, Z. Zhang, F. Xiong, et al.. Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti–Karsanti ophiolite, southern Turkey. Am Mineral. 2017; 102(5): 1101-1113.
[25]   Y. Chen, J. Yang, Z. Xu, Y. Tian, S. Lai. Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. J Asian Earth Sci. 2018; 164: 179-193.
[26]   W. Wu, J. Yang, C. Ma, I. Milushi, D. Lian, Y. Tian. Discovery and significance of diamonds and moissanites in chromitite within the Skenderbeu massif of the Mirdita zone ophiolite, West Albania. Acta Geol Sin. 2017; 91(3): 882-897.
[27]   S. Das, A.R. Basu, B.K. Mukherjee. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology. 2017; 45(8): 755-758.
[28]   D. Howell, W.L. Griffin, J. Yang, S. Gain, R.A. Stern, J. Huang, et al.. Diamonds in ophiolites: contamination or a new diamond growth environment?. Earth Planet Sci Lett. 2015; 430(1): 284-295.
[29]   J. Yang, P.T. Robinson, Y. Dilek. Diamonds in ophiolites. Elements. 2014; 10(2): 127-130.
[30]   D. Zhao, E. Ohtani. Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Res. 2009; 16(3): 401-413.
[31]   Y. Fukao. Seismic Tomogram of the Earth’s Mantle: geodynamic implications. Science. 1992; 258(5082): 625-630.
[32]   S.P. Grand. Mantle shear structure beneath the Americas and surrounding oceans. J Geophys Res Solid Earth. 1994; 99(B6): 11591-11621.
[33]   G. Masters, G. Laske, F. Gilbert. Matrix autoregressive analysis of free-oscillation coupling and splitting. Geophys J R Astron Soc. 2000; 143(2): 478-489.
[34]   B. Schmandt, S.D. Jacobsen, T.W. Becker, Z. Liu, K.G. Dueker. Earth’s interior. Dehydration melting at the top of the lower mantle. Science. 2014; 344(6189): 1265-1268.
[35]   D.J. Schulze, B. Harte, F.Z. Page, J.W. Valley, D.M.D. Channer, A.L. Jaques. Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology. 2013; 41(4): 455-458.
[36]   A.D. Burnham, A.R. Thomson, G.P. Bulanova, S.C. Kohn, C.B. Smith, M.J. Walter. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet Sci Lett. 2015; 432: 374-380.
[37]   P. Cartigny. Stable isotopes and the origin of diamond. Elements. 2005; 1(2): 79-84.
[38]   T. Stachel, J.W. Harris. Formation of diamond in the Earth’s mantle. J Phys Condens Matter. 2009; 21(36): 364206.
[39]   G.P. Bulanova, M.J. Walter, C.B. Smith, S.C. Kohn, L.S. Armstrong, J. Blundy, et al.. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol. 2010; 160(4): 489-510.
[40]   J.J. Gurney, H.H. Helmstaedt, S.H. Richardson, S.B. Shirey. Diamonds through time. Econ Geol. 2010; 105(3): 689-712.
[41]   J. Yang, L. Dobrzhinetskaya, W. Bai, Q. Fang, P.T. Robinson, J. Zhang, et al.. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite Tibet. Geology. 2007; 35(10): 875-878.
[42]   L.F. Dobrzhinetskaya, R. Wirth, J. Yang, I.D. Hutcheon, P.K. Weber, H.W. Green. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Natl Acad Sci USA. 2009; 106(46): 19233-19238.
[43]   S. Yamamoto, T. Komiya, K. Hirose, S. Maruyama. Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos. 2009; 109(3): 314-322.
[44]   J. Yang, F. Meng, X. Xu, P.T. Robinson, Y. Dilek, A.B. Makeyev, et al.. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 2015; 27(2): 459-485.
[45]   Y. Dilek, H. Furnes. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull. 2011; 123(3/4): 387-411.
[46]   J.E. Shigley, J. Chapman, R.K. Ellison. Discovery and mining of the argyle diamond deposit, Australia. Gems Gemol. 2001; 37(1): 26-41.
[47]   A.L. Jaques, H.S.C. O’Neill, C.B. Smith, J. Moon, B.W. Chappell. Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contrib Mineral Petrol. 1990; 104(3): 255-276.
[48]   K.V. Smit, S.B. Shirey, W. Wang. Type Ib diamond formation and preservation in the West African lithospheric mantle: Re-Os age constraints from sulphide inclusions in Zimmi diamonds. Precambrian Res. 2016; 286: 152-166.
[49]   A.R. Thomson, S.C. Kohn, G.P. Bulanova, C.B. Smith, D. Araujo, M.J. Walter. Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: evidence for diamond growth from slab melts. Lithos. 2016; 265: 108-124.
[50]   D. Zedgenizov, V. Reutsky, M. Wiedenbeck. The carbon and nitrogen isotope characteristics of Type Ib-IaA cuboid diamonds from alluvial placers in the Northeastern Siberian Platform. Minerals (Basel). 2017; 7(10): 1-9.
[51]   I. Leung, W. Guo, I. Friedman, J. Gleason. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature. 1990; 346(6282): 352-354.
[52]   D.A. Wyman, J.A. Ayer, R.V. Conceição, R.P. Sage. Mantle processes in an Archean orogen: evidence from 2.67 Ga diamond-bearing lamprophyres and xenoliths. Lithos. 2006; 89(3–4): 300-328.
[53]   P.J. Heaney, E.P. Vicenzi, S. De. Strange diamonds: the mysterious origins of carbonado and framesite. Elements. 2005; 1(2): 85-89.
[54]   R. Feenstra. Diamonds are becoming more important to drilling technology. Oil Gas J. 1985; 83(32): 131-136.
[55]   K. Klug. Core drillings with polycrystalline diamonds (PCD)—a new drilling technology without water and dust. Key Eng Mater. 2003; 250(16): 253-256.
[56]   T. Stachel, J.W. Harris. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev. 2008; 34(1): 5-32.
[57]   F. Kaminsky. Mineralogy of the lower mantle: a review of “super-deep” mineral inclusions in diamond. Earth Sci Rev. 2012; 110(1): 127-147.
[58]   T. Stachel, G.P. Brey, J.W. Harris. Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements. 2005; 1(2): 73-78.
[59]   F.R. Boyd, J.J. Gurney. Diamonds and the African lithosphere. Science. 1986; 232(4749): 472-477.
[60]   R.O. Moore, J.J. Gurney. Pyroxene solid solution in garnets included in diamond. Nature. 1985; 318(6046): 553-555.
[61]   T. Stachel. Diamonds from the asthenosphere and the transition zone. Eur J Mineral. 2001; 13(5): 883-892.
[62]   R. Tappert, T. Stachel, J.W. Harris, K. Muehlenbachs, T. Ludwig, G.P. Brey. Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol. 2005; 150(5): 505-522.
[63]   C. Anzolini, R.J. Angel, M. Merlini, M. Derzsi, K. Tokár, S. Milani, et al.. Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos. 2016; 265: 138-147.
[64]   J.G. Liou, W.G. Ernst, R.Y. Zhang, T. Tsujimori, B.M. Jahn. Ultrahigh-pressure minerals and metamorphic terranes—the view from China. J Asian Earth Sci. 2009; 35(3): 199-231.
[65]   H. Schertl, N.V. Sobolev. The Kokchetav Massif, Kazakhstan: “type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci. 2013; 63: 5-38.
[66]   X. Shutong, S. Wen, L. Yican, J. Laili, J. Shouyuan, A.I. Okay, et al.. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science. 1992; 256(5053): 80-82.
[67]   L.F. Dobrzhinetskaya, E.A. Eide, R.B. Larsen, B.A. Sturt, R.G. Trønnes, D.C. Smith, et al.. Microdiamond in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology. 1995; 23(7): 597.
[68]   H.L.M.V. Roermund, D.A. Carswell, M.R. Drury, T.C. Heijboer. Micro-diamonds in a megacrystic garnet-websterite pod from Bardane on the island of Fjortoft, western Norway: evidence for diamond formation in mantle rocks during deep continental subduction. Geology. 2002; 30(11): 959-962.
[69]   H.J. Massonne. A new occurrence of microdiamonds in quartz feldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution.
[70]   B. Stöckhert, J. Duyster, C. Trepmann, H.J. Massonne. Microdiamond daughter crystals precipitated from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology. 2001; 29(5): 391-394.
[71]   E.D. Mposkos, D.K. Kostopoulos. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett. 2001; 192(4): 497-506.
[72]   K. Naemura, D. Ikuta, H. Kagi, S. Odake, T. Ueda, S. Ohi, et al.. Diamond and other possible ultradeep evidence discovered in the orogenic spinel-garnet peridotite from the Moldanubian Zone of the Bohemian Massif, Czech Republic. Ultrahigh Pressure Metamorphism. 2011; 1(1): 77-111.
[73]   M. Perraki, S.W. Faryad. First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos. 2014; 202: 157-166.
[74]   M. Janák, N. Froitzheim, K. Yoshida, V. Sasinková, M. Nosko, T. Kobayashi, et al.. Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. J Metamorph Geol. 2015; 33(5): 495-512.
[75]   V.S. Shatsky, Y.N. Pal’yanov, A.G. Sokol, A.A. Tomilenko, N.V. Sobolev. Diamond formation in UHP dolomite marbles and garnet-pyroxene rocks of the Kokchetav Massif, Northern Kazakhstan: natural and experimental evidence. Int Geol Rev. 2005; 47(10): 999-1010.
[76]   P. Cartigny, K.D. Corte, V.S. Shatsky, M. Ader, P.D. Paepe, N.V. Sobolev, et al.. The origin and formation of metamorphic microdiamonds from the Kokchetav Massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem Geol. 2001; 176(1–4): 265-281.
[77]   A.B. Verchovsky, U. Ott, F. Begemann. Implanted radiogenic and other noble gases in crustal diamonds from Northern Kazakhstan. Earth Planet Sci Lett. 1993; 120(3): 87-102.
[78]   H. Sumino, L.F. Dobrzhinetskaya, R. Burgess, H. Kagi. Deep-mantle-derived noble gases in metamorphic diamonds from the Kokchetav Massif, Kazakhstan. Earth Planet Sci Lett. 2011; 307(3): 439-449.
[79]   P.K. Swart, M.M. Grady, C.T. Pillinger, R.S. Lewis, E. Anders. Interstellar carbon in meteorites. Science. 1983; 220(4595): 406-410.
[80]   T.J. Bernatowicz, R. Cowsik, S. Amari, R.S. Lewis. Constraints on stellar grain formation from circumstellar graphite in the Murchison Meteorite. Astrophys J. 1996; 472(2): 760-782.
[81]   T.J. Mccoy, T.L. Dickinson, G.E. Lofgren. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit Planet Sci. 1999; 34(5): 735-746.
[82]   R.M. Stroud, M.F. Chisholm, P.R. Heck, C.M.O. Alexander, L.R. Nittler. Constraining the origin of meteoritic nanodiamond residues with single-atom sensitivity electron microscopy. In: Proceedings of the Workshop on Formation of the First Solids in the Solar System; 2011 Nov 7–9; Kauai, HI, USA. 2011. p. 9033.
[83]   R.M. Hough, I. Gilmour, C.T. Pillinger, J.W. Arden, K.W.R. Gilkess, J. Yuan, et al.. Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature. 1995; 378(6552): 41-44.
[84]   C. Koeberl, V.L. Masaitis, G.I. Shafranovsky, I. Gilmour, F. Langenhorst, M. Schrauder. Diamonds from the Popigai impact structure, Russia. Geology. 1997; 25(11): 967-970.
[85]   R.M. Hazen, R.T. Downs, A.P. Jones, L. Kah. Carbon mineralogy and crystal chemistry. Rev Mineral Geochem. 2013; 75(1): 7-46.
[86]   R.S. Lewis, B. Srinivasan, E. Anders. Host phase of a strange xenon component in Allende. Science. 1975; 190(4221): 1251-1262.
[87]   S.S. Russell, J.W. Arden, C.T. Pillinger. A carbon and nitrogen isotope study of diamond from primitive chondrites. Meteorit Planet Sci. 1996; 31(3): 343-355.
[88]   V.L. Masaitis, G.I. Shafranovskii, V.A. Ezerskii, N.B. Reshetniak. Impact diamonds in ureilites and impactites. Meteoritika. 1990; 49: 180-196.
[89]   E.P. Gurov, E.P. Gurova, R.B. Rakitskaya. Impact diamonds in the craters of the Ukrainian Shield. Meteoritics. 1995; 30(5): 515-516.
[90]   M. Siebenschock, R.T. Schmitt, D. Stoffler. Impact diamonds in glass bombs from suevite of the Ries Crater, Germany: new observations. Meteorit Planet Sci. 1998; 33(4): 145.
[91]   A.E. Goresy, P. Gillet, M. Chen, F. Künstler, G. Graup, V. Stähle. In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany. Am Mineral. 2001; 86(5–6): 611-621.
[92]   X. Xu, J. Yang, S. Chen, Q. Fang, W. Bai, D. Ba. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo Suture Zone, Tibet. J Earth Sci-China. 2009; 20(2): 284-302.
[93]   F. Xiong, J. Yang, T.R. Paul, X. Xu, D. Ba, Y. Li, et al.. Diamonds and other exotic minerals recovered from peridotites of the dangqiong ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geol Sin. 2016; 90(2): 425-439.
[94]   Y. Tian, J. Yang, P.T. Robinson, F. Xiong, L.I. Yuan, Z. Zhang, et al.. Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geol Sin. 2015; 89(2): 332-340. Chinese
[95]   Z. Huang, J. Yang, T.R. Paul, Y. Wang, F. Xiong, Z. Zhang, et al.. The discovery of diamonds in chromitites of the Hegenshan ophiolite, Inner Mongolia, China. Acta Geol Sin. 2015; 89(2): 341-350. Chinese
[96]   F. Xiong, J. Yang, P.T. Robinson, Y. Dilek, I. Milushi, X. Xu, et al.. Diamonds discovered from high-Cr podiform chromitites of Bulqiza, Eastern Mirdita ophiolite, Albania. Acta Geol Sin. 2017; 91(2): 455-468. Chinese
[97]   W. Wu, J. Yang, R. Wirth, Y. Dilek, D. Lian, I. Milushi. Origin Of diamonds in Skenderbeu Massif, Mirdita ophiolite, Albania: implications from isotopes and inclusion compositions; Seattle, WA, USA.
[98]   H. Rollinson, J. Adetunji. Mantle podiform chromitites do not form beneath mid-ocean ridges: a case study from the Moho transition zone of the Oman ophiolite. Lithos. 2013; 177: 314-327.
[99]   J.A. Pearce, S.J. Lippard, S. Roberts. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ. 1984; 16(1): 77-94.
[100]   Y. Dilek, H. Furnes. Ophiolites and their origins. Elements. 2014; 10(2): 93-100.
[101]   M. Zhou, P.T. Robinson, J. Malpas, Z. Li. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol. 1996; 37(1): 3-21.
[102]   W. Kaiser, W.L. Bond. Nitrogen, a major impurity in common type I diamond. Phys Rev. 1959; 115(4): 857-863.
[103]   X. Xu, P. Cartigny, J. Yang, Y. Dilek, F. Xiong, G. Guo. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere. 2017; 10(1): 156-169.
[104]   S.R. Boyd, C.T. Pillinger, H.J. Milledge, M.J. Mendelssohn, M. Seal. Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit. Nature. 1988; 331(6157): 604-607.
[105]   I. Sunagawa. Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth. 1990; 99(1–4): 1156-1161.
[106]   D. Lian, J. Yang, M. Wiedenbeck, Y. Dilek, A. Rocholl, W. Wu. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contrib Mineral Petrol. 2018; 173(9): 1-18.
[107]   K.S. Moe, J.S. Yang, P. Johnson, X. Xu, W. Wang. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite. Lithosphere. 2017; 10(1): 133-141.
[108]   B. Harte. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag. 2010; 74(2): 189-215.
[109]   H.K. Mao, L.C. Chen, R.J. Hemley, A.P. Jephcoat, Y. Wu, W.A. Bassett. Stability and equation of state of CaSiO3-perovskite to 134 GPa. J Geophys Res Solid Earth. 1989; 94(B12): 17889-17894.
[110]   L. Li, D.J. Weidner, J. Brodholt, D. Alfè, G.D. Price, R. Caracas, et al.. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys Earth Planet Inter. 2006; 155(3–4): 249-259.
[111]   T. Komabayashi, K. Hirose, N. Sata, Y. Ohishi, L.S. Dubrovinsky. Phase transition in CaSiO3 perovskite. Earth Planet Sci Lett. 2007; 260(3): 564-569.
[112]   P. Deines, J.W. Harris, J.J. Gurney. Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim Cosmochim Acta. 1993; 57(12): 2781-2796.
[113]   P. Deines. The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Cosmochim Acta. 1980; 44(7): 943-961.
[114]   M.B. Kirkley, J.J. Gurney, M.L. Otter, S.J. Hill, L.R. Daniels. The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl Geochem. 1991; 6(5): 477-494.
[115]   K. Hogberg, T. Stachel, R.A. Stern. Carbon and nitrogen isotope systematics in diamond: different sensitivities to isotopic fractionation or a decoupled origin?. Lithos. 2016; 265: 16-30.
[116]   R.B. Trumbull, J. Yang, P.T. Robinson, S. Di Pierro, T. Vennemann, M. Wiedenbeck. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: new discoveries from ophiolites. Lithos. 2009; 113(3): 612-620.
[117]   L.F. Dobrzhinetskaya, H.W. Green. Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. J Metamorph Geol. 2007; 25(2): 83-96.
[118]   Y. Wu, M. Xu, Z. Jin, Y. Fei, P.T. Robinson. Experimental constraints on the formation of the Tibetan podiform chromitites. Lithos. 2016; 245(15): 109-117.
[119]   E.A. Mathez, R.A. Fogel, I.D. Hutcheon, V.K. Marshintsev. Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochim Cosmochim Acta. 1995; 59(4): 781-791.
[120]   A.A. Shiryaev, F. Gaillard. Local redox buffering by carbon at low pressures and the formation of moissanite—natural SiC. Eur J Mineral. 2014; 26(1): 53-59.
[121]   A. Golubkova, M.W. Schmidt, J.A.D. Connolly. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contrib Mineral Petrol. 2016; 171(5): 1-17.
[122]   M.W. Schmidt, C. Gao, A. Golubkova, A. Rohrbach, J.A. Connolly. Natural moissanite (SiC)—a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Prog Earth Planet Sci. 2014; 1(1): 1-14.
[123]   P.T. Robinson, R.B. Trumbull, A. Schmitt, J. Yang, J. Li, M. Zhou, et al.. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 2015; 27(2): 486-506.
[124]   S. Yamamoto, T. Komiya, H. Yamamoto, Y. Kaneko, M. Terabayashi, I. Katayama, et al.. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Isl Arc. 2013; 22(1): 89-103.
[125]   S. Arai. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett. 2013; 379(1): 81-87.
[126]   M. Zhou, P.T. Robinson, B. Su, J. Gao, J. Li, J. Yang, et al.. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res. 2014; 26(1): 262-283.
[127]   N.M. Mcgowan, W.L. Griffin, J.M. González-Jiménez, E. Belousova, J.C. Afonso, R. Shi, et al.. Tibetan chromitites: excavating the slab graveyard. Geology. 2015; 43(2): 179-182.
[128]   W.L. Griffin, J.C. Afonso, E.A. Belousova, S.E. Gain, X. Gong, J.M. González-Jiménez, et al.. Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol. 2016; 57(4): 1-30.
[129]   F. Xiong, J. Yang, P.T. Robinson, X. Xu, Z. Liu, Y. Li, et al.. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res. 2015; 27(2): 525-542.
[130]   C. Ballhaus, R.O.C. Fonseca, A. Bragagni. Reply to comment on ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes by Griffin et al., no evidence for transition ophiolite, metamorphism in the Luobusa ophiolite. Geochem Perspect Lett. 2018; 7: 3-4.
[131]   W.L. Griffin, D. Howell, J.M. Gonzalez-Jimenez, Q. Xiong, S.Y.O. Reilly. Comment on “Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes”. Geochem Perspect Lett. 2018; 7: 1-2.
[132]   C. Ballhaus, R. Wirth, R.O.C. Fonseca, H. Blanchard, W.P. Ll. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem Perspect Lett. 2017; 5: 42-46.
[133]   J.S. Yang, R. Trumbull, P.T. Robinson, F.H. Xiong, D.Y. Lian. Comment 2 on “Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes”. Geochem Perspect Lett. 2018; 8: 6-7.
[134]   H. Bijwaard, W. Spakman, E.R. Engdahl. Closing the gap between regional and global travel time tomography. J Geophys Res Solid Earth. 1998; 103(B12): 30055-30078.
[135]   D. Zhao. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys Earth Planet in. 2004; 146(1): 3-34.
[136]   T.H. Torsvik, K. Burke, B. Steinberger, S.J. Webb, L.D. Ashwal. Diamonds sampled by plumes from the core-mantle boundary. Nature. 2010; 466(7304): 352-355.
[137]   K. Burke, B. Steinberger, T.H. Torsvik, M.A. Smethurst. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet Sci Lett. 2008; 265(1–2): 49-60.
[138]   K. Hirose, N. Takafuji, N. Sata, Y. Ohishi. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett. 2005; 237(1–2): 239-251.
[139]   T. Irifune, A.E. Ringwood. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett. 1993; 117(1–2): 101-110.
[140]   K. Hirose, Y. Fei, Y. Ma, H.K. Mao. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature. 1999; 397(6714): 53-56.
[141]   S. Ono, Y. Ohishi, M. Isshiki, T. Watanuki. In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. J Geophys Res Solid Earth. 2005; 110(B2): 1-11.
[142]   Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, et al.. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature. 2016; 534(7606): 241-244.
[143]   J. Liu, Q. Hu, D. Young Kim, Z. Wu, W. Wang, Y. Xiao, et al.. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature. 2017; 551(7681): 494-497.
[144]   H.K. Mao, Q. Hu, L. Yang, J. Liu, D.Y. Kim, Y. Meng, et al.. When water meets iron at Earth’s core-mantle boundary. Natl Sci Rev. 2017; 4(6): 1-9.
[145]   A. Reymer, G. Schubert. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics. 1984; 3(1): 63-77.
[146]   B.J. Wood, A. Pawley, D.R. Frost. Water and carbon in the Earth’s mantle. Philos Trans Mathematl Phys Eng Sci. 1996; 1711(354): 1495-1511.
[147]   H. Craig. The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta. 1953; 3(2): 53-92.
[148]   M. Javoy, F. Pineau, I. Iiyama. Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma. Contrib Mineral Petrol. 1978; 67(1): 35-39.
[149]   D.T. Murphy, K.D. Collerson, B.S. Kamber. Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol. 2002; 43(6): 981-1001.
[150]   F.V. Kaminsky, R. Wirth. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral. 2011; 49(2): 555-572.
[151]   R. Tappert, T. Stachel, J.W. Harris, K. Muehlenbachs, T. Ludwig, G.P. Brey. Subducting oceanic crust: the source of deep diamonds. Geology. 2005; 33(7): 565-568.
[152]   P. Cartigny. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett. 2010; 296(3): 329-339.
[153]   H. Furnes, M.D. Wit, Y. Dilek. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geosci Front. 2014; 5(4): 571-603.
Related
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering