Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 441 -447
Research Deep Matter & Energy—Review |
Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior
Li Zhanga(), Hongsheng Yuana, Yue Mengb, Ho-Kwang Maoac
a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
b HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
c Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
Abstract  Abstract

The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (PT) conditions are essential for understanding deep mantle processes. Such high PT experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching; thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 μm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high PT multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high PT conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.

Keywords High pressure      Synchrotron X-ray      Multigrain      Diamond anvil cell      Minerals      Petrology      Earth’s interior     
Corresponding Authors: Li Zhang   
Issue Date: 11 July 2019
E-mail this article
E-mail Alert
Articles by authors
Li Zhang
Hongsheng Yuan
Yue Meng
Ho-Kwang Mao
Cite this article:   
Li Zhang,Hongsheng Yuan,Yue Meng, et al. Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior[J]. Engineering, 2019, 5(3): 441 -447 .
URL:     OR
[1]   A. Ricolleau, Y. Fei, E. Cottrell, H. Watson, L. Deng, L. Zhang, et al.. Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett. 2009; 36(6): 36.
[2]   T. Irifune, T. Shinmei, C.A. McCammon, N. Miyajima, D.C. Rubie, D.J. Frost. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science. 2010; 327(5962): 193-195.
[3]   K. Hirose, Y. Fei, Y. Ma, H.K. Mao. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature. 1999; 397(6714): 53-56.
[4]   I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, et al.. Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett. 2014; 401: 12-17.
[5]   C.M. Bertka, Y. Fei. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res Solid Earth. 1997; 102(B3): 5251-5264.
[6]   B. Lavina, Y. Meng. Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe5O6. Sci Adv. 2015; 1(5): e1400260.
[7]   H.K. Mao, P.M. Bell. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars. Science. 1978; 200: 1145-1147.
[8]   S. Tateno, K. Hirose, Y. Ohishi, Y. Tatsumi. The structure of iron in Earth’s inner core. Science. 2010; 330(6002): 359-361.
[9]   T. Lay. Sharpness of the D″ discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition. Geophys Res Lett. 2008; 35(3): 35.
[10]   M. Panning, B. Romanowicz. Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science. 2004; 303(5656): 351-353.
[11]   W. Su, R.L. Woodward, A.M. Dziewonski. Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res. 1994; 99(B4): 6945-6980.
[12]   R. Miletich, D.R. Allan, W.F. Kuhs. High-pressure single-crystal techniques. Rev Mineral Geochem. 2000; 41(1): 445-519.
[13]   P. Dera, K. Zhuravlev, V. Prakapenka, M.L. Rivers, G.J. Finkelstein, O. Grubor-Urosevic, et al.. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res. 2013; 33(3): 466-484.
[14]   L. Dubrovinsky, T. Boffa-Ballaran, K. Glazyrin, A. Kurnosov, D. Frost, M. Merlini, et al.. Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Press Res. 2010; 30(4): 620-633.
[15]   D.J. Frost, Y. Fei. Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth. 1998; 103(B4): 7463-7474.
[16]   M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi. Post-perovskite phase transition in MgSiO3. Science. 2004; 304(5672): 855-858.
[17]   A.R. Oganov, S. Ono. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D'' layer. Nature. 2004; 430(6998): 445-448.
[18]   W.L. Mao, Y. Meng, G. Shen, V.B. Prakapenka, A.J. Campbell, D.L. Heinz, et al.. Iron-rich silicates in the Earth’s D'' layer. Proc Natl Acad Sci USA. 2005; 102(28): 9751-9753.
[19]   M. Nishi, T. Irifune, J. Tsuchiya, Y. Tange, Y. Nishihara, K. Fujino, et al.. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci. 2014; 7(3): 224-227.
[20]   W. Zhang, A.R. Oganov, A.F. Goncharov, Q. Zhu, S.E. Boulfelfel, A.O. Lyakhov, et al.. Unexpected stable stoichiometries of sodium chlorides. Science. 2013; 342(6165): 1502-1505.
[21]   K. Hirose, N. Takafuji, N. Sata, Y. Ohishi. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett. 2005; 237(1–2): 239-251.
[22]   G. Shen, H.K. Mao. High-pressure studies with x-rays using diamond anvil cells, reports on progress in physics. Physical Society. 2017; 80: 016101.
[23]   T.S. Duffy. Synchrotron facilities and the study of the Earth’s deep interior. Rep Prog Phys. 2005; 68(8): 1811-1859.
[24]   H.K. Mao, B. Chen, J. Chen, K. Li, J.F. Lin, W. Yang, et al.. Recent advances in high-pressure science and technology. Matter Radiat Extremes. 2016; 1(1): 59-75.
[25]   L. Zhang, Y. Meng, P. Dera, W. Yang, W.L. Mao, H.K. Mao. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. Proc Natl Acad Sci USA. 2013; 110(16): 6292-6295.
[26]   C. Nisr, G. Ribárik, T. Ungár, G.B.M. Vaughan, P. Cordier, S. Merkel. High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. J Geophys Res. 2012; 117(B3): B03201.
[27]   S. Schmidt. GrainSpotter: a fast and robust polycrystalline indexing algorithm. J Appl Cryst. 2014; 47(1): 276-284.
[28]   H.O. Sørensen, S. Schmidt, J.P. Wright, G.B.M. Vaughan, S. Techert, E.F. Garman, et al.. Multigrain crystallography. Z Kristallogr. 2012; 227(1): 63-78.
[29]   L. Zhang, Y. Meng, W. Yang, L. Wang, W.L. Mao, Q.S. Zeng, et al.. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science. 2014; 344(6186): 877-882.
[30]   L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, et al.. In-situ crystal structure determination of seifertite SiO2 at 129 GPa: studying a minor phase near Earth’s core-mantle boundary. Am Mineral. 2016; 101(1): 231-234.
[31]   M. Merlini, M. Hanfland, A. Salamat, S. Petitgirard, H. Müller. The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. Am Mineral. 2015; 100(8–9): 2001-2004.
[32]   Oxford Diffraction Ltd. CrysAlis Red. Version p171.29.2 [software]; 2006.
[33]   W. Kabsch. XDS. Acta Crystallogr D Biol Crystallogr. 2010; D66: 125-132.
[34]   P. Dera. GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector.
[35]   G.M. Sheldrick. A short history of SHELX. Acta Crystallogr A. 2008; A64: 112-122.
[36]   L. Zhang, H. Yuan, Y. Meng, H.K. Mao. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH. Proc Natl Acad Sci USA. 2018; 115(12): 2908-2911.
[37]   S. Lundin, K. Catalli, J. Santillán, S.H. Shim, V.B. Prakapenka, M. Kunz, et al.. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Inter. 2008; 168(1–2): 97-102.
[38]   Y. Fei, L. Zhang, A. Corgne, H. Watson, A. Ricolleau, Y. Meng, et al.. Spin transition and equations of state of (Mg,Fe)O solid solutions. Geophys Res Lett. 2007; 34(17): L17307.
[39]   L. Zhang, Y. Meng, H. Mao. Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa. Prog Earth Planet Sci. 2016; 3(1): 13.
[40]   M. Miyahara, T. Sakai, E. Ohtani, Y. Kobayashi, S. Kamada, T. Kondo, et al.. Application of FIB system to ultra-high-pressure Earth science. J Mineral Petrol Sci. 2008; 103(2): 88-93.
[1] Jack Binns, Miriam Peña-Alvarez, Mary-Ellen Donnelly, Eugene Gregoryanz, Ross T. Howie, Philip Dalladay-Simpson. Structural Studies on the Cu–H System under Compression[J]. Engineering, 2019, 5(3): 505 -509 .
[2] Wendy L. Mao, Yu Lin, Yijin Liu, Jin Liu. Applications for Nanoscale X-ray Imaging at High Pressure[J]. Engineering, 2019, 5(3): 479 -489 .
[3] Takayuki Ishii, Zhaodong Liu, Tomoo Katsura. A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils[J]. Engineering, 2019, 5(3): 434 -440 .
[4] John S. Tse. First-Principles Methods in the Investigation of the Chemical and Transport Properties of Materials under Extreme Conditions[J]. Engineering, 2019, 5(3): 421 -433 .
[5] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Śliwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.