Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 490 -497
Research Deep Matter & Energy—Article |
Carbonation of Chrysotile under Subduction Conditions
Mihye Konga, Yongjae Leeab()
a Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea
b Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
Abstract  Abstract

In order to understand the role of serpentine minerals in the global carbon cycle, high-pressure X-ray diffraction (XRD) experiments were performed on chrysotile (Mg3Si2O5(OH)4) using carbon dioxide (CO2) as a pressure medium. Synchrotron XRD patterns revealed the formation of magnesite and high-pressure chrysotile after heating at 170 °C for 1 h at 2.5(1) GPa. The Rietveld refinement suggests that the unit cell composition of the original chrysotile changes to Mg2.4(1)Si2O5(OH)2.4(1) upon the formation of magnesite, which appears to be driven by the dehydrogenation of the innermost hydroxyl group, OH3, and the rearrangement of magnesium (Mg) at the M1 site, leading to the formation of metastable monodehydroxylated chrysotile. Metastable chrysotile is observed up to 5.0(1) GPa and 500 °C, which corresponds to the slab Moho geotherms for the South Sumatra and Ryukyu subduction zone. After recovery to ambient conditions, the characteristic fibrous morphology of the original chrysotile was found to have changed to an earthy form. These results can help us to understand deep carbon cycling along the subduction zones, and may prompt the design of a novel method of asbestos detoxification using pressure and temperature.

Keywords Volatile      Carbon cycle      Serpentine      Asbestos      Subduction zone     
Corresponding Authors: Yongjae Lee   
Issue Date: 11 July 2019
E-mail this article
E-mail Alert
Articles by authors
Mihye Kong
Yongjae Lee
Cite this article:   
Mihye Kong,Yongjae Lee. Carbonation of Chrysotile under Subduction Conditions[J]. Engineering, 2019, 5(3): 490 -497 .
URL:     OR
[1]   K. Keil. Mineralogical and chemical relationships among enstatie chondrites. J Geophys Res. 1968; 73(22): 6945-6976.
[2]   T. Takahashi, S.C. Sutherland, A. Kozyr. Global ocean surface water partial pressure of CO2 database: measurements performed during 1957–2012. Report.
[3]   J.C. Alt, D.A.H. Teagle. The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta. 1999; 63(10): 1527-1535.
[4]   D. Charvrit, E. Humler, O. Grasset. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth Planet Sci Lett. 2014; 387: 229-239.
[5]   N.H. Sleep, K. Zhanle. Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res. 2001; 106(E1): 1373-1399.
[6]   R. Dasgupta, M.M. Hirschmann. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. 2010; 298(1–2): 1-13.
[7]   P. Plank, C.H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol. 1998; 145(3–4): 325-394.
[8]   H. Staudigel. Hydrothermal alteration processes in the oceanic crust. In: editor. Treatise on geochemistry. Oxford: Elsevier-Pergamon; 2003. p. 511-535.
[9]   S. Shilobreeva, I. Martinez, V. Busigny, P. Agrinier, C. Laverne. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim Cosmochim Acta. 2011; 75(9): 2237-2255.
[10]   B. Debret, K.T. Koga, F. Cattani, C. Nicollet, G.V. den Bleeken, S. Tchwartz. Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones. Lithos. 2016; 244: 165-181.
[11]   I.M. Power, S.A. Wilson, G.M. Dipple. Serpentinite carbonation for CO2 sequestration. Elements. 2013; 9(2): 115-121.
[12]   S. Poli, M.W. Schmidt. Water transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J Geophys Res. 1995; 100(B11): 22299-22314.
[13]   B. Wunder, W. Schreyer. Antigorite: high pressure stability in the system MgO–SiO2–H2O (MSH). Lithos. 1997; 41(1–3): 213-227.
[14]   T.L. Grove, C.B. Till, E. Lev, N. Chatterjee, E. Médard. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature. 2009; 459(7247): 694-697.
[15]   V. Magni, P. Bouilhol, J. van Hunen. Deep water recycling through time. Geochem Geophys Geosyst. 2014; 15(11): 4203-4216.
[16]   J.F. Molina, S. Poli. Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett. 2000; 176(3–4): 295-310.
[17]   D.M. Kerrick, J.A.D. Connolly. Metamorphic devolatilization fo subducted mid-ocean ridge matabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett. 2001; 189(1–2): 19-29.
[18]   E.S. Kiseeva, G.M. Yaxley, J. Hermann, K.D. Litasov, A. Rosenthal, V.S. Kamenetsky. An experimental study of carbonated eclogite at 3.5–5.5 GPa-implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol. 2012; 53: 727-759.
[19]   P.I. Dorogokupers. Equation of state of magnesite for the conditions of the Earth’s lower mantle. Geochem Int. 2007; 45(6): 561-568.
[20]   P. Ulmer, V. Trommsdorff. Phase relations of hydrous mantle subducting to 300 km. In: editor. Mantle petrology: field observations and high pressure experimentation. Houston: Geochemical Society Special Publication; 1999. p. 259-281.
[21]   M.G. Bostock, R.D. Hyndman, S. Rondenay, S.M. Peacock. An inverted continental Moho and serpentinization of the forearc mantle. Nature. 2002; 417(6888): 536-538.
[22]   L.H. Rupke, J.P. Morgan, M. Hort, J.A.D. Connolly. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett. 2004; 223(1–2): 17-34.
[23]   P. Fryer, E.L. Ambos, D.M. Hussong. Origin and emplacement of Mariana forearc seamounts. Geology. 1985; 13(11): 774-777.
[24]   S. Guillot, K. Hattori, J. de Sigoyer, T. Nagler, A.L. Auzende. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet Sci Lett. 2001; 193(1–2): 115-127.
[25]   D.P. Dobson, P.G. Meredith, S.A. Boon. Simulation of subduction zone seismicity by dehydration of serpentine. Science. 2002; 298(5597): 1407-1410.
[26]   H. Jung, H.W. GreenII, L.F. Dobrzhinetskaya. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature. 2004; 428(6982): 545-549.
[27]   B.W. Evans. The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev. 2004; 46(6): 479-506.
[28]   B. Reynard, N. Hilairet, E. Balan, M. Lazzeri. Elasticity of serpentines and extensive serpentinization in subduction zones. Geophys Res Lett. 2007; 34(13): L13307.
[29]   H.K. Mao, J. Xu, P.M. Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res. 1986; 91(B5): 4673-4676.
[30]   A.C. Larson, R.B. Von Dreele. General structure analysis system (GSAS). Report.
[31]   B.H. Toby. EXPGUI, a graphical user interface for GSAS. J Appl Cryst. 2001; 34(2): 210-213.
[32]   P. Thompson, D.E. Cox, J.B. Hastings. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst. 1987; 20(2): 79-83.
[33]   H.M. Rietveld. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969; 2(2): 65-71.
[34]   F. Birch. Finite elastic strain of cubic crystals. Phys Rev. 1947; 71(11): 809-824.
[35]   R.J. Angel, J. Gonzalez-Platas, M. Alvaro. EosFit-7c and a fortran module (library) for equation of state calculations. Z Kristallogr. 2014; 229: 405-419.
[36]   A.F. Gualtieri, G. Artioli. Quantitative determination of chrysotile asbestos in bulk materials by combined Rietveld and RIR methods. Powder Diffr. 1995; 10(4): 269-277.
[37]   G. Falini, E. Foresti, M. Gazzano, A.F. Gualtieri, M. Leoni, I.G. Lesci, et al.. Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry. 2004; 10(12): 3043-3049.
[38]   E.A. Kalinichenko, A.S. Litovchenko. Effect of an electric field on brucite dehydroxylation. Phys Solid State. 2000; 42(11): 2070-2075.
[39]   M.J. Mckelvy, R. Sharma, A.V.G. Chizmeshya, R.W. Carpenter, K. Streib. Magnesium hydroxide dehydroxylation: in situ nanoscale observation of lamellar nucleation and growth. Chem Mater. 2001; 13(3): 921-926.
[40]   F. Larachi, I. Daldoul, G. Beaudoin. Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: ex-situ and in-situ characterizations. Geochim Cosmochim Acta. 2010; 74(11): 3051-3075.
[41]   B.Z. Dlugogorski, R.D. Balucan. Dehydroxylation of serpentine minerals: implications for mineral carbonation. Renew Sustain Energy Rev. 2014; 34: 353-367.
[42]   P. Clift, P. Vannucchi. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys. 2004; 42(2): RG2001.
[43]   K. Obara. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science. 2002; 296(5573): 1679-1681.
[44]   E.M. Syracuse, P.E. van Keken, G.A. Abers. The global range of subduction zone thermal models. Phys Earth Planet Inter. 2010; 183(1–2): 73-90.
[45]   P.E. Van Keken, B.R. Hacker, E.M. Syracuse, G.A. Abers. Subduction factory: 4. depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res. 2011; 116(B1): B01401.
[46]   S. Guillot, S. Schwartz, B. Reynard, P. Agard, C. Prigent. Tectonic significance of serpentinites. Tectonophysics. 2015; 646: 1-19.
[1] Nikolay V. Sobolev, Anatoly A. Tomilenko, Taras A. Bul'bak, Alla M. Logvinova. Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia[J]. Engineering, 2019, 5(3): 471 -478 .
[2] Sheng-Ao Liu, Shu-Guang Li. Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges[J]. Engineering, 2019, 5(3): 448 -457 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.