Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 479 -489
Research Deep Matter & Energy—Article |
Applications for Nanoscale X-ray Imaging at High Pressure
Wendy L. Maoab(), Yu Linb, Yijin Liuc, Jin Liua
a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
c Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Abstract  Abstract

Coupling nanoscale transmission X-ray microscopy (nanoTXM) with a diamond anvil cell (DAC) has exciting potential as a powerful three-dimensional probe for non-destructive imaging at high spatial resolution of materials under extreme conditions. In this article, we discuss current developments in high-resolution X-ray imaging and its application in high-pressure nanoTXM experiments in a DAC with third-generation synchrotron X-ray sources, including technical considerations for preparing successful measurements. We then present results from a number of recent in situ high-pressure measurements investigating equations of state (EOS) in amorphous or poorly crystalline materials and in pressure-induced phase transitions and electronic changes. These results illustrate the potential this technique holds for addressing a wide range of research areas, ranging from condensed matter physics and solid-state chemistry to materials science and planetary interiors. Future directions for this exciting technique and opportunities to improve its capabilities for broader application in high-pressure science are discussed.

Keywords X-ray imaging      High pressure      Diamond anvil cell     
Corresponding Authors: Wendy L. Mao   
Issue Date: 11 July 2019
E-mail this article
E-mail Alert
Articles by authors
Wendy L. Mao
Yu Lin
Yijin Liu
Jin Liu
Cite this article:   
Wendy L. Mao,Yu Lin,Yijin Liu, et al. Applications for Nanoscale X-ray Imaging at High Pressure[J]. Engineering, 2019, 5(3): 479 -489 .
URL:     OR
[1]   L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, et al.. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature. 2015; 525(7568): 226-229.
[2]   H.K. Mao, W.L. Mao. Theory and practice—diamond-anvil cells and probes for high P-T mineral physics studies. In: editor. Treatise on geophysics: mineral physics. Amsterdam: Elsevier; 2007. p. 231-268.
[3]   R.I. Frankel. Centennial of Röntgen’s discovery of X-rays. West J Med. 1996; 164(6): 497-501.
[4]   A. Du Plessis, S.G. Le Roux, A. Guelpa. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud Nondestr Test Eval. 2016; 6: 17-25.
[5]   E.N. Landis, D.T. Keane. X-ray microtomography. Mater Charact. 2010; 61(12): 1305-1316.
[6]   Y. Liu, A.M. Kiss, D.H. Larsson, F. Yang, P. Pianetta. To get the most out of high resolution X-ray tomography: a review of the post-reconstruction analysis. Spectrochim Acta B At Spectrosc. 2016; 117: 29-41.
[7]   W. Bautz, W. Kalender, N. Godfrey. Hounsfield and his effect on radiology. Radiologe. 2005; 45(4): 350-355. German
[8]   A. Sakdinawat, D. Attwood. Nanoscale X-ray imaging. Nat Photonics. 2010; 4(12): 840-848.
[9]   C. Chang, A. Sakdinawat. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nat Commun. 2014; 5(1): 4243.
[10]   C.Y. Shi, L. Zhang, W. Yang, Y. Liu, J. Wang, Y. Meng, et al.. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat Geosci. 2013; 6(11): 971-975.
[11]   C.A. Larabell, K.A. Nugent. Imaging cellular architecture with X-rays. Curr Opin Struct Biol. 2010; 20(5): 623-631.
[12]   C. Wei, S. Xia, H. Huang, Y. Mao, P. Pianetta, Y. Liu. Mesoscale battery science: the behavior of electrode particles caught on a multispectral X-ray camera. Acc Chem Res. 2018; 51(10): 2484-2492.
[13]   J.C. Andrews, B.M. Weckhuysen. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. Chem Phys Chem. 2013; 14(16): 3655-3666.
[14]   F. Meirer, J. Cabana, Y. Liu, A. Mehta, J.C. Andrews, P. Pianetta. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat. 2011; 18: 773-781.
[15]   Y. Liu, F. Meirer, J. Wang, G. Requena, P. Williams, J. Nelson, et al.. 3D elemental sensitive imaging using transmission X-ray microscopy. Anal Bioanal Chem. 2012; 404(5): 1297-1301.
[16]   J.C. Andrews, E. Almeida, M.C. Van der Meulen, J.S. Alwood, C. Lee, Y. Liu, et al.. Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal. 2010; 16(3): 327-336.
[17]   Y. Liu, F. Meirer, P.A. Williams, J. Wang, J.C. Andrews, P. Pianetta. TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J Synchrotron Radiat. 2012; 19(Pt 2): 281-287.
[18]   D. Gürsoy, F. De Carlo, X. Xiao, C. Jacobsen. TomoPy: a framework for the analysis of synchrotron tomographic data. J Synchrotron Radiat. 2014; 21: 1188-1193.
[19]   X. Yang, F. De Carlo, C. Phatak, D. Gürsoy. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography. J Synchrotron Radiat. 2017; 24: 469-475.
[20]   Y. Yang, F. Yang, F.F. Hingerl, X. Xiao, Y. Liu, Z. Wu, et al.. Registration of the rotation axis in X-ray tomography. J Synchrotron Radiat. 2015; 22(2): 452-457.
[21]   M. Guizar-Sicairos, J.J. Boon, K. Mader, A. Diaz, A. Menzel, O. Bunk. Quantitative interior X-ray nanotomography by a hybrid imaging technique. Optica. 2015; 2(3): 259-266.
[22]   D. Gürsoy, Y.P. Hong, K. He, K. Hujsak, S. Yoo, S. Chen, et al.. Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. Sci Rep. 2017; 7(1): 11818.
[23]   H. Yu, S. Xia, C. Wei, Y. Mao, D. Larsson, X. Xiao, et al.. Automatic projection image registration for nanoscale X-ray tomographic reconstruction. J Synchrotron Radiat. 2018; 25: 1819-1826.
[24]   Y. Liu, J. Wang, M. Azuma, W.L. Mao, W. Yang. Five-dimensional visualization of phase transition in BiNiO3 under high pressure. Appl Phys Lett. 2014; 104(4): 043108.
[25]   J.Y. Wang, W. Yang, S. Wang, X. Xiao, F. De Carlo, Y. Liu, et al.. High pressure nano-tomography using an iterative method. J Appl Phys. 2012; 111(11): 112626.
[26]   X. Duan, F. Yang, E. Antono, W. Yang, P. Pianetta, S. Ermon, et al.. Unsupervised data mining in nanoscale X-ray spectro-microscopic study of NdFeB magnet. Sci Rep. 2016; 6(1): 34406.
[27]   Y. Xu, E. Hu, K. Zhang, X. Wang, V. Borzenets, Z. Sun, et al.. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett. 2017; 2(5): 1240-1245.
[28]   Y. Lin, Q. Zeng, W. Yang, W.L. Mao. Pressure-induced densification in GeO2 glass: a transmission X-ray microscopy study. Appl Phys Lett. 2013; 103(26): 261909.
[29]   Q. Zeng, Y. Kono, Y. Lin, Z. Zeng, J. Wang, S.V. Sinogeikin, et al.. Universal fractional noncubic power law for density of metallic glasses. Phys Rev Lett. 2014; 112(18): 185502.
[30]   H. Liu, L. Wang, X. Xiao, F. De Carlo, J. Feng, H.K. Mao, et al.. Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography. Proc Natl Acad Sci USA. 2008; 105(36): 13229-13234.
[31]   Q. Zeng, Y. Lin, Y. Liu, Z. Zeng, C.Y. Shi, B. Zhang, et al.. General 2.5 power law of metallic glasses. Proc Natl Acad Sci USA. 2016; 113(7): 1714-1718.
[32]   D.Z. Chen, C.Y. Shi, Q. An, Q. Zeng, W.L. Mao, W.A. Goddard3rd, et al.. Fractal atomic-level percolation in metallic glasses. Science. 2015; 349(6254): 1306-1310.
[33]   Y. Lin, L. Zhang, H.K. Mao, P. Chow, Y. Xiao, M. Baldini, et al.. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys Rev Lett. 2011; 107(17): 175504.
[34]   S.K. Lee, J.F. Lin, Y.Q. Cai, N. Hiraoka, P.J. Eng, T. Okuchi, et al.. X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth’s mantle. Proc Natl Acad Sci USA. 2008; 105(23): 7925-7929.
[35]   M. Murakami, A.F. Goncharov, N. Hirao, R. Masuda, T. Mitsui, S.M. Thomas, et al.. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nat Commun. 2014; 5(1): 5428.
[36]   S. Petitgirard, W.J. Malfait, R. Sinmyo, I. Kupenko, L. Hennet, D. Harries, et al.. Fate of MgSiO3 melts at core-mantle boundary conditions. Proc Natl Acad Sci USA. 2015; 112(46): 14186-14190.
[37]   T. Sato, N. Funamori. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys Rev B Condens Matter Mater Phys. 2010; 82(18): 184102.
[38]   M. Wu, Y. Liang, J.Z. Jiang, J.S. Tse. Structure and properties of dense silica glass. Sci Rep. 2012; 2(1): 398.
[39]   C. Zha, R.J. Hemley, H. Mao, T.S. Duffy, C. Meade. Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B Condens Matter. 1994; 50(18): 13105-13112.
[40]   T. Sato, N. Funamori. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys Rev Lett. 2008; 101(25): 255502.
[41]   M. Murakami, J.D. Bass. Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass. Phys Rev Lett. 2010; 104(2): 025504.
[42]   Q. Williams, R. Jeanloz. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science. 1988; 239(4842): 902-905.
[43]   L. Stixrude, B. Karki. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science. 2005; 310(5746): 297-299.
[44]   G. Shen, Q. Mei, V.B. Prakapenka, P. Lazor, S. Sinogeikin, Y. Meng, et al.. Effect of helium on structure and compression behavior of SiO2 glass. Proc Natl Acad Sci USA. 2011; 108(15): 6004-6007.
[45]   A.N. Clark, C.E. Lesher, S.D. Jacobsen, Y. Wang. Anomalous density and elastic properties of basalt at high pressure: reevaluating of the effect of melt fraction on seismic velocity in the Earth’s crust and upper mantle. J Geophys Res Solid Earth. 2016; 121(6): 4232-4248.
[46]   D.B. Ghosh, B.B. Karki, L. Stixrude. First-principles molecular dynamics simulations of MgSiO3 glass: structure, density, and elasticity at high pressure. Am Mineral. 2014; 99(7): 1304-1314.
[47]   H. Jiang, R. Xu, C.C. Chen, W. Yang, J. Fan, X. Tao, et al.. Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. Phys Rev Lett. 2013; 110(20): 205501.
[48]   J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science. 2015; 348(6234): 530-535.
[49]   W. Yang, X. Huang, R. Harder, J.N. Clark, I.K. Robinson, H.K. Mao. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat Commun. 2013; 4(1): 1680.
[50]   M. Eriksson, J.F. Van der Veen, C. Quitmann. Diffraction-limited storage rings—a window to the science of tomorrow. J Synchrotron Radiat. 2014; 21: 837-842.
[51]   B.W.J. McNeil, N.R. Thompson. X-ray free-electron lasers. Nat Photonics. 2010; 4(12): 814-821.
[1] Jack Binns, Miriam Peña-Alvarez, Mary-Ellen Donnelly, Eugene Gregoryanz, Ross T. Howie, Philip Dalladay-Simpson. Structural Studies on the Cu–H System under Compression[J]. Engineering, 2019, 5(3): 505 -509 .
[2] Li Zhang, Hongsheng Yuan, Yue Meng, Ho-Kwang Mao. Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior[J]. Engineering, 2019, 5(3): 441 -447 .
[3] Takayuki Ishii, Zhaodong Liu, Tomoo Katsura. A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils[J]. Engineering, 2019, 5(3): 434 -440 .
[4] John S. Tse. First-Principles Methods in the Investigation of the Chemical and Transport Properties of Materials under Extreme Conditions[J]. Engineering, 2019, 5(3): 421 -433 .
[5] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Śliwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.