Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2019, Vol. 5 Issue (3) : 580 -585     https://doi.org/10.1016/j.eng.2018.11.033
Research Robotics—Article |
A Micro Peristaltic Pump Using an Optically Controllable Bioactuator
Eitaro Yamatsutaa, Sze Ping Beha, Kaoru Uesugia, Hidenobu Tsujimurab, Keisuke Morishimaa()
a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan
b Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
Abstract
Abstract  Abstract

Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 μm and the average outer diameter was about 750 μm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 μm·s−1.

Keywords Tubular structure      Bioactuator      Peristaltic pump      Optogenetics      Biomaterial      Muscle actuator      Tissue engineered      Soft robot     
Corresponding Authors: Keisuke Morishima   
Issue Date: 11 July 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Eitaro Yamatsuta
Sze Ping Beh
Kaoru Uesugi
Hidenobu Tsujimura
Keisuke Morishima
Cite this article:   
Eitaro Yamatsuta,Sze Ping Beh,Kaoru Uesugi, et al. A Micro Peristaltic Pump Using an Optically Controllable Bioactuator[J]. Engineering, 2019, 5(3): 580 -585 .
URL:  
http://www.engineering.org.cn/EN/10.1016/j.eng.2018.11.033     OR     http://www.engineering.org.cn/EN/Y2019/V5/I3/580
References
[1]   Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, et al.. An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip. 2006; 6(3): 362-368.
[2]   Y. Akiyama, T. Sakuma, K. Funakoshi, T. Hoshino, K. Iwabuchi, K. Morishima. Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip. 2013; 13(24): 4870-4880.
[3]   J.C. Nawroth, H. Lee, A.W. Feinberg, C.M. Ripplinger, M.L. McCain, A. Grosberg, et al.. A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol. 2012; 30(8): 792-797.
[4]   V. Chan, K. Park, M.B. Collens, H. Kong, T.A. Saif, R. Bashir. Development of miniaturized walking biological machines. Sci Rep. 2012; 2: 857.
[5]   V. Chan, J.H. Jeong, P. Bajaj, M. Collens, T. Saif, H. Kong, et al.. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip. 2012; 12(1): 88-98.
[6]   J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S.H. Lee, et al.. Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip. 2007; 7(11): 1504-1508.
[7]   J. Xi, J.J. Schmidt, C.D. Montemagno. Self-assembled microdevices driven by muscle. Nat Mater. 2005; 4(2): 180-184.
[8]   H. Fujita, K. Shimizu, E. Nagamori. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Biotechnol Bioeng. 2010; 106(3): 482-489.
[9]   Y. Morimoto, M. Kato-Negishi, H. Onoe, S. Takeuchi. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials. 2013; 34(37): 9413-9419.
[10]   D.G. Caldwell. Natural and artificial muscle elements as robot actuators. Mechatronics. 1993; 3(3): 269-283.
[11]   I.W. Hunter, S. Lafontaine. A comparison of muscle with artificial actuators. In: Proceedings of Technical Digest IEEE Solid-State Sensor and Actuator Workshop; 1992 Jun 22–25; Hilton Head Island, SC, USA. Piscataway: IEEE; 1992. p. 178-185.
[12]   Y. Akiyama, K. Odaira, K. Sakiyama, T. Hoshino, K. Iwabuchi, K. Morishima. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomed Microdev. 2012; 14(6): 979-986.
[13]   Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima. Electrical stimulation of cultured lepidopteran dorsal vessel tissue: an experiment for development of bioactuators. In Vitro Cell Dev Biol-Animal. 2010; 46: 411-415.
[14]   M.S. Sakar, D. Neal, T. Boudou, M.A. Borochin, Y. Li, R. Weiss, et al.. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip. 2012; 12(23): 4976-4985.
[15]   S.P. Beh, M. Hirooka, T. Hoshino, K. Hoshino, Y. Akiyama, H. Tsujimura, et al.. Visual servo of muscle-powered optogenetic bioactuator. In: Proceedings of 2013 Transducers & Eurosensors XXVII. In: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems; 2013 Jun 16–20; Barcelona, Spain. Piscataway: IEEE; 2013. p. 1444-1447.
[16]   E. Yamatsuta, S.P. Beh, K. Morishima. Living peristaltic micro conveyor tube of optogenetically controllable bioactuator. In: Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems; 2015 Jun 21–25; Anchorage, AK, USA. Piscataway: IEEE; 2015. p. 827-830.
[17]   S.J. Park, M. Gazzola, K.S. Park, S. Park, V. Di Santo, E.L. Blevins, et al.. Phototactic guidance of a tissue-engineered soft-robotic ray. Science. 2016; 353(6295): 158-162.
[18]   E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005; 8(9): 1263-1268.
[19]   F. Zhang, A.M. Aravanis, A. Adamantidis, L. de Lecea, K. Deisseroth. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci. 2007; 8(8): 577-581. Erratum in: Nat Rev Neurosci 2007;8(9):732
[20]   Shimizu M, Yawata S, Miyamoto K, Miyasaka K, Asano T, Yoshinobu T, et al. Toward biorobotic systems with muscle cell actuators. In: Proceedings of the 5th International Symposium on Adaptive Motion of Animals and Machines; 2011 Oct 11–14; Hyogo, Japan; 2011. p. 87–8.
[21]   T. Asano, T. Ishizuka, K. Morishima, H. Yawo. Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep. 2015; 5: 8317.
[22]   T. Nakamura, T. Iwanaga. Locomotion strategy for a peristaltic crawling robot in a 2-dimensional space. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation; 2008 May 19–23; Pasadena, CA, USA. Piscataway: IEEE; 2008. p. 238-243.
[23]   T. Kishi, M. Ikeuchi, T. Nakamura. Development of a peristaltic crawling inspection robot for 1-inch gas pipes with continuous elbows. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3–7; Tokyo, Japan. Piscataway: IEEE; 2013. p. 3297-3302.
[24]   N. Saga, T. Nakamura. Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm. Smart Mater Struct. 2004; 13(3): 566-569.
[25]   S. Seok, C.D. Onal, R. Wood, D. Rus, S. Kim. Peristaltic locomotion with antagonistic actuators in soft robotics. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation; 2010 May 3–7; Anchorage, AK, USA. Piscataway: IEEE; 2004. p. 3282-3287.
[26]   A. Menciassi, S. Gorini, G. Pernorio, P. Dario. A SMA actuated artificial earthworm. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation; 2004 Apr 26–May 1; New Orleans, LA, USA. Piscataway: IEEE; 2004. p. 3282-3287.
[27]   J. Xie, J. Shih, Q. Lin, B. Yang, Y.C. Tai. Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip. 2004; 4(5): 495-501.
[28]   Z. Orfanos. Transgenic tools for Drosophila muscle research. J Muscle Res Cell Motil. 2008; 29(6–8): 185-188.
[29]   S.R. Pulver, S.L. Pashkovski, N.J. Hornstein, P.A. Garrity, L.C. Griffith. Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol. 2009; 101(6): 3075-3088.
[30]   J. Park, I.C. Kim, J. Baek, M. Cha, J. Kim, S. Park, et al.. Micro pumping with cardiomyocyte-polymer hybrid. Lab Chip. 2007; 7(10): 1367-1370.
Related
[1] David F. Williams. Biocompatibility Pathways in Tissue-Engineering Templates[J]. Engineering, 2018, 4(2): 286 -290 .
[2] Jorge L. Escobar Ivirico, Maumita Bhattacharjee, Emmanuel Kuyinu, Lakshmi S. Nair, Cato T. Laurencin. Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies[J]. Engineering, 2017, 3(1): 16 -27 .
[3] Zhi Cui,Baofeng Yang,Ren-Ke Li. Application of Biomaterials in Cardiac Repair and Regeneration[J]. Engineering, 2016, 2(1): 141 -148 .
[4] Rúben F. Pereira, Paulo J. Bártolo. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery[J]. Engineering, 2015, 1(1): 90 -112 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering