Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2018, Vol. 4 Issue (5) : 653 -660     https://doi.org/10.1016/j.eng.2018.08.004
Research Applied Geophysics—Review |
Research Developments and Prospects on Microseismic Source Location in Mines
Jiulong Chenga, Guangdong Songab(), Xiaoyun Sunc, Laifu Wena, Fei Lia
a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
b Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
c School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract
Abstract  Abstract

Microseismic source location is the essential factor in microseismic monitoring technology, and its location precision has a large impact on the performance of the technique. Here, we discuss the problem of low-precision location identification for microseismic events in a mine, as may be obtained using conventional location methods that are based on arrival time. In this paper, microseismic location characteristics in mining are analyzed according to the characteristics of the mine’s microseismic wavefield. We review research progress in mine-related microseismic source location methods in recent years, including the combination of the Geiger method with the linear method, combined microseismic event location method, optimization of relative location method, location method without pre-measured velocity, and location method without arrival time picking. The advantages and disadvantages of these methods are discussed, along with their feasible conditions. The influences of geophone distribution, first arrival time picking, and the velocity model on microseismic source location are analyzed, and measures are proposed to influence these factors. Approaches to solve the problem under study include adopting information fusion, combining and optimizing existing methods, and creating new methods to realize high-precision microseismic source location. Optimization of the velocity structure, along with applications of the time-reversal imaging technique, passive time-reversal mirror, and relative interferometric imaging, are expected to greatly improve microseismic location precision in mines. This paper also discusses the potential application of information fusion and deep learning methods in microseismic source location in mines. These new and innovative location methods for microseismic source location have extensive prospects for development.

Keywords Microseismic source location      Influencing factors      Time-reversal imaging      Research progress      Prospects for development     
Corresponding Authors: Guangdong Song   
Just Accepted Date: 24 August 2018   Issue Date: 26 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiulong Cheng
Guangdong Song
Xiaoyun Sun
Laifu Wen
Fei Li
Cite this article:   
Jiulong Cheng,Guangdong Song,Xiaoyun Sun, et al. Research Developments and Prospects on Microseismic Source Location in Mines[J]. Engineering, 2018, 4(5): 653 -660 .
URL:  
http://engineering.ckcest.cn/eng/EN/10.1016/j.eng.2018.08.004     OR     http://engineering.ckcest.cn/eng/EN/Y2018/V4/I5/653
References
[1]   Y. Cheng, F. Jiang, X. Zhang, Z. Mao, Z. Ji. C-shaped strata spatial structure and stress field in longwall face monitored by microseismic monitoring. Chin J Rock Mech Eng. 2007; 26(1): 102-107. Chinese
[2]   M. Ge. Efficient mine microseismic monitoring. Int J Coal Geol. 2005; 64(1–2): 44-56.
[3]   X. Luo, P. Hatherly. Application of microseismic monitoring to characterize geomechanical conditions in longwall mining. Explor Geophys. 1998; 29(4): 489-493.
[4]   Rutledge JT, Phillips WS, House LS, Zinno RJ. Microseismic mapping of a cotton valley hydraulic fracture using decimated downhole arrays. In: Proceedings of the International Exposition and Sixty Eighth Annual Meeting; 1998 Sep 13–18; New Orleans, LA, USA; 1998. p. 338–41.
[5]   M. Ge. Analysis of source location algorithms part I: overview and non-iterative methods. J Acoust Emiss. 2003; 21: 14-28.
[6]   W. Yang, X. Jin, S. Li, Q. Ma. Study of seismic location methods. Earthq Eng Eng Vib. 2005; 25(1): 14-25. Chinese
[7]   J. Cheng, G. Song, T. Liu, B. Hu, J. Wang, J. Wang. High precision location of micro-seismic sources in underground coal mine. Chin J Geophys. 2016; 59(12): 4513-4520. Chinese
[8]   G. Song, C. Wang, J. Wang, Y. Zhao, Z. Zhang, T. Liu. Experimental research on plane vibration location based on optical fiber grating acceleration sensors. Metal Mine. 2012; 3: 32-36. Chinese
[9]   H.Y. Li, F.X. Jiang, S.H. Yang. Research and application of microseismic monitoring location of strata fracturing based on Matlab. J Chin Coal Soc. 2006; 31(2): 154-158. Chinese
[10]   F. Lin, S. Li, Y. Xue, H. Xu. Microseismic source location methods based on different initial values. Chin J Rock Mech Eng. 2010; 29(5): 996-1002. Chinese
[11]   Y.M. Kang, J.P. Liu, H.B. Li, C.H. Wei. An AE source location combination algorithm based on least square method. J Northeast Uni (Nat Sci). 2010; 31(11): 1648–51,56. Chinese
[12]   Poliannikov OV, Prange M, Malcolm AE, Djikpesse H. Joint microseismic event location with uncertain velocity. In: Proceedings of the Society of Exploration Geophysicists Conference Exposition; 2013 Sep 22–27; Houston, TX, USA; 2013. p. 2094–8.
[13]   J.L. Got, P. Okubo. New insights into Kilauea’s volcano dynamics brought by large-scale relative relocation of microearthquakes. J Geophys Res. 2003; 108(B7): 2337-2349.
[14]   V. Grechka, Z. Li, B. Howell. Relative location of microseismic events with multiple masters. Geophysics. 2016; 81(4): KS149-KS158.
[15]   F. Castellanos, M. Van der Baan. Dynamic triggering of microseismicity in a mine setting. Geophys J Int. 2015; 202(2): 728-737.
[16]   F. Castellanos, M. Van der Baan. Microseismic event locations using the double-difference algorithm. CSEG Rec. 2013; 38(3): 26-37.
[17]   Y. Chen, H. Zhang, Y. Miao, Y. Zhang, Q. Liu. Back azimuth constrained double-difference seismic location and tomography for downhole microseismic monitoring. Phys Earth Planet Inter. 2017; 264: 35-46.
[18]   L. Dong, X. Li, L. Tang, F.Q. Gong. Mathematical functions and parameters for microseismic source location without pre-measuring speed. Chin J Rock Mech Eng. 2011; 30(10): 2057-2067. Chinese
[19]   H. Kao, S. Shan. The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophys J Int. 2004; 157(2): 589-594.
[20]   X. He. A micro source inversion method based on three component data. Oil Geophys Prospect. 2013; 48(1): 71-76. Chinese
[21]   J. Kinscher, P. Bernard, I. Contrucci, A. Mangeney, J.P. Piguet, P. Bigarre. Location of microseismic swarms induced by salt solution mining. Geophys J Int. 2015; 200(1): 337-362.
[22]   M. Ge, P.K. Kaiser. Practical application of an innovative microseismic source location procedure. Geotech Geol Eng. 1992; 10(3): 163-184.
[23]   Y. Sato, D. Skoko. Optimum distribution of seismic observation points II. Bull Earthq Res Inst Univ Tokyo. 1965; 43: 451-457.
[24]   A. Kijko. An algorithm for optimum distribution of a regional seismic network-I. Pure Appl Geophys. 1977; 115(4): 999-1009.
[25]   S. Gong, L. Dou, A. Cao, H. He, T. Du, H. Jiang. Study on optimal configuration of seismological observation network for coal mine. Chin J Geophys. 2010; 53(2): 457-465. Chinese
[26]   Y. Gao, Q. Wu, S. Wu, M. Ji, A. Cheng, K. Yang. Optimization of microseismic monitoring networks based on the theory of D-optimal design. J Univ Sci Technol Beijing. 2013; 35(12): 1538-1545. Chinese
[27]   K. Anderson. Robust earthquake location using M-estimates. Phys Earth Planet Int. 1982; 30(2–3): 119-130.
[28]   X. Li, W. Wang, B. Chen. The AB algorithm suitable for identifying microseismic signal and P wave first time automatically under the project scale. Chin J Rock Mech Eng. 2017; 36(3): 681-689. Chinese
[29]   X.B. Li, Z.W. Wang, L.J. Dong. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM). Sci Rep. 2016; 6: 19205.
[30]   W.Q. Song, C. Feng. Automatic identification and localization of microseismic effective events. Oil Geophys Prosp. 2013; 48(2): 283-288. Chinese
[31]   N. Belayouni, A. Gesret, G. Daniel, M. Noble. Microseismic event location using the first and reflected arrivals. Geophysics. 2015; 80(6): WC133-WC143.
[32]   L. Guo, F. Dai, N. Xu, Y. Fan, B. Li. Research on MSFM-based microseismic source location of rock mass with complex velocities. Chin J Rock Mech Eng. 2017; 36(2): 394-406. Chinese
[33]   Collins DS, Toya Y, Pinnock I, Shumila V, Hosseini Z. 3D velocity model with complex geology and voids for microseismic location and mechanism. In: Proceedings of the Deep Mining; 2014 Sep 16–18; Sudbury, ON, Canada; 2014. p. 681–9.
[34]   R. Van Dok, B. Fuller, L. Engelbrecht, M. Sterling. Seismic anisotropy in microseismic event location analysis. Leading Edge (Tulsa Okla). 2011; 30(7): 766-770.
[35]   Michael J, Richard P. Microseismic event location accuracy enhancement using anisotropic velocity models. In: Proceedings of the GeoCanada 2010; 2010 May 10–14; Calgary, AB, Canada; 2010. p. 1–4.
[36]   L. Eisner, B.J. Hulsey, P. Duncan, D. Jurick, H. Werner, W. Keller. Comparison of surface and borehole locations of induced seismicity. Geophys Prospect. 2010; 58(5): 809-820.
[37]   A.M. Fish. Microseismic velocity inversion and event location using reverse time imaging [dissertation].
[38]   A. Gesret, N. Desassis, M. Noble, T. Romary, C. Maisons. Propagation of the velocity model uncertainties to the seismic event location. Geophys J Int. 2015; 200(1): 52-66.
[39]   N. Li, E. Wang. Mechanisms of key factors and application for microseismic source location. Chinese
[40]   L. Xu, H. Du, C. Yan, C. Li. A method for determination of earthquake hypocentroid: time-reversal imaging technique I—principle and numerical tests. Chin J Geophys. 2013; 56(4): 1190-1206. Chinese
[41]   M. Gu. Elastic wave time-reversal source imaging [dissertation]. Chinese
[42]   Q. Yang, X. Duan. Development status and trend of reverse time migration. Geophy Prospect Pet. 2010; 49(1): 92-98. Chinese
[43]   S.M. Hansen, B. Schmandt. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array. Geophys Res Lett. 2015; 42(18): 7390-7397.
[44]   Q. Xue, Y. Wang, X. Chang. Fast 3D elastic micro-seismic source location using new GPU features. Phys Earth Planet Inter. 2016; 261: 24-35.
[45]   J. Wu, P. Zhang, H. Lü, X. Zeng. Application of microseismic event location using amplitude summation in surface monitoring. J Jilin Univ (Earth Sci Ed). 2017; 47(1): 255-264. Chinese
[46]   J. Ma. Research on time reversal mirror passive localization [dissertation]. Chinese
[47]   Li L, Chen H, Wang X. Relative interferometric imaging for microseismic source location: a synthetic case study. In: Proceedings of the SPG/SEG 2016 International Geophysical Conference; 2016 Apr 20–22; Beijing, China; 2016. p. 367–70. Chinese.
[48]   C. Wang, J. Cheng, C. Yin, H. Liu. Microseismic event location using reverse-time focusing and interferometric techniques for surface and borehole observations. Chin J Geophys. 2013; 56(5): 584-597.
[49]   Waltz E, Llinas J. Multisensor data fusion. Norwood, MA: Artech House, Inc.; 1990.
[50]   D.L. Hall, J. Llinas. Introduction to multisensory data fusion. Proc IEEE. 1997; 85(1): 6-23.
[51]   R.C. Wu. Key technology research of information fusion in military information system [dissertation]. Chinese
[52]   Tian X, Zhang K, Li Z. Seismic data denoising based on online dictionary learning algorithm. In: Proceedings of the SEG Technical Program Expanded; 2017 Sep 24–29; Houston, TX, USA; 2017. p. 5105–9.
[53]   Zhao ZG, Gross L. Using supervised machine learning to distinguish microseismic from noise events. In: Proceedings of the SEG Technical Program Expanded; 2017 Sep 24–29; Houston, TX, USA; 2017. p. 2918–23.
Related
[1] Hongyu Pu, Xiaoyu Li, Qingbo Du, Hao Cui, Yongping Xu. Research Progress in the Application of Chinese Herbal Medicines in Aquaculture: A Review[J]. Engineering, 2017, 3(5): 731 -737 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering