Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2018, Vol. 4 Issue (4) : 552 -558
Research Crop Genetics and Breeding—Review |
Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow
Aili Lia, Dengcai Liub, Wuyun Yangc, Masahiro Kishiid(), Long Maoa()
a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
b Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
c Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
d International Maize and Wheat Improvement Center, Texcoco 56237, Mexico
Abstract  Abstract

In recent years, wheat yield per hectare appears to have reached a plateau, leading to concerns for future food security with an increasing world population. Since its invention, synthetic hexaploid wheat (SHW) has been shown to be an effective genetic resource for transferring agronomically important genes from wild relatives to common wheat. It provides new sources for yield potential, drought tolerance, disease resistance, and nutrient-use efficiency when bred conventionally with modern wheat varieties. SHW is becoming more and more important for modern wheat breeding. Here, we review the current status of SHW generation, study, and application, with a particular focus on its contribution to wheat breeding. We also briefly introduce the most recent progress in our understanding of the molecular mechanisms for growth vigor in SHW. Advances in new technologies have made the complete wheat reference genome available, which offers a promising future for the study and applications of SHW in wheat improvement that are essential to meet global food demand.

Keywords Synthetic wheat      Wheat      Polyploidization      Disease resistance      Stress tolerance      Yield     
Corresponding Authors: Masahiro Kishii,Long Mao   
Issue Date: 11 September 2018
E-mail this article
E-mail Alert
Articles by authors
Aili Li
Dengcai Liu
Wuyun Yang
Masahiro Kishii
Long Mao
Cite this article:   
Aili Li,Dengcai Liu,Wuyun Yang, et al. Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow[J]. Engineering, 2018, 4(4): 552 -558 .
URL:     OR
[1]   H. Kihara. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic. 1944; 19: 889-890.
[2]   A. Madlung. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013; 110: 99-104.
[3]   Y. Matsuoka. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 2011; 52(5): 750-764.
[4]   E.S. McFadden, E.R. Sears. The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered. 1946; 37(3): 81-89.
[5]   J. Dubcovsky, J. Dvorak. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007; 316(5833): 1862-1866.
[6]   K. Rafique, C.A. Rauf, A. Gul, H. Bux, A. Ali, R.A. Memon, et al.. Evaluation of D-genome synthetic hexaploid wheats and advanced derivatives for powdery mildew resistance. Pak J Bot. 2017; 49(2): 735-743.
[7]   L.Q. Zhang, D.C. Liu, Y.L. Zheng, Z.H. Yan, S.F. Dai, Y.F. Li, et al.. Frequent occurrence of unreduced gametes in Triticum turgidumAegilops tauschii hybrids. Euphytica. 2010; 172(2): 285-294.
[8]   M. Hao, J.T. Luo, D.Y. Zeng, L. Zhang, S.Z. Ning, Z.W. Yuan, et al.. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3-Genes Genom Genet. 2014; 4(10): 1943-1953.
[9]   S.J. Xu, Y.S. Dong. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome. 1992; 35(3): 379-384.
[10]   J. Luo, M. Hao, L. Zhang, J. Chen, L. Zhang, Z. Yuan, et al.. Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat. Int J Mol Sci. 2012; 13(10): 12533-12543.
[11]   D.C. Liu, M. Hao, A.L. Li, L.Q. Zhang, Y.L. Zheng, L. Mao. Allopolyploidy and interspecific hybridization for wheat improvement. In: editor. Polyploidy and hybridization for crop improvement. Boca Raton: CRC Press; 2016. p. 27-52.
[12]   M.K. Das, G.H. Bai, A. Mujeeb-Kazi, S. Rajaram. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet Resour Crop Evol. 2016; 63(8): 1285-1296.
[13]   D.J. Pritchard, P.A. Hollington, W.P. Davies, J. Gorham, J.L.D. de Leon, A.K. Mujeeb-Kazi. K+/Na+ discrimination in synthetic hexaploid wheat lines: transfer of the trait for K+/Na+ discrimination from Aegilops tauschii into a Triticum turgidum background. Cereal Res Commun. 2002; 30(3): 261-267.
[14]   A. Mujeeb-Kazi, A. Gul, M. Farooq, S. Rizwan, I. Ahmad. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust J Agric Res. 2008; 59(5): 391-398.
[15]   R. Masood, N. Ali, M. Jamil, K. Bibi, J.C. Rudd, A. Mujeeb-Kazi. Novel genetic diversity of the alien D-genome synthetic hexaploid wheat (2n = 6x = 42, AABBDD) germplasm for various phenology traits. Pak J Bot. 2016; 48(5): 2017-2024.
[16]   M.L. Warburton, J. Crossa, J. Franco, M. Kazi, R. Trethowan, S. Rajaram, et al.. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica. 2006; 149(3): 289-301.
[17]   E. McLean, M. Cogswell, I. Egli, D. Wojdyla, B. de Benoist. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009; 12(4): 444-454.
[18]   D.F. Calderini, I. Ortiz-Monasterio. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci. 2003; 43(1): 141-151.
[19]   J. Thomas, S. Nilmalgoda, C. Hiebert, B. McCallum, G. Humphreys, R. DePauw. Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Sci. 2010; 50(6): 2310-2317.
[20]   C. Guzman, A.S. Medina-Larque, G. Velu, H. Gonzalez-Santoyo, R.P. Singh, J. Huerta-Espino, et al.. Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. J Cereal Sci. 2014; 60(3): 617-622.
[21]   W. Yang, D. Liu, J. Li, L. Zhang, H. Wei, X. Hu, et al.. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics. 2009; 36(9): 539-546.
[22]   R. Tahir, H. Bux, A.G. Kazi, A. Rasheed, A.A. Napar, S.U. Ajmal, et al.. Evaluation of Pakistani elite wheat germplasm for T1BL.1RS chromosome translocation. J Agric Sci Technol. 2014; 16(2): 421.
[23]   L.W. Casey, P. Lavrencic, A.R. Bentham, S. Cesari, D.J. Ericsson, T. Croll, et al.. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc Natl Acad Sci USA. 2016; 113(45): 12856-12861.
[24]   S. Periyannan, U. Bansal, H. Bariana, K. Deal, M.C. Luo, J. Dvorak, et al.. Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet. 2014; 127(4): 947-955.
[25]   S. Periyannan, J. Moore, M. Ayliffe, U. Bansal, X. Wang, L. Huang, et al.. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013; 341(6147): 786-788.
[26]   R.P. Singh, A. Mujeeb-Kazi, J. Huerta-Espino. Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology. 1998; 88(9): 890-894.
[27]   L.S. Arraiano, P.A. Brading, J.K.M. Brown. A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol. 2001; 50(3): 339-346.
[28]   S.M. Tabib Ghaffary, J.D. Faris, T.L. Friesen, R.G. Visser, T.A. van der Lee, O. Robert, et al.. New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet. 2012; 124(1): 125-142.
[29]   W. Tadesse, S.L.K. Hsam, G. Wenzel, F.J. Zeller. Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. × Aegilops tauschii Coss.). Crop Sci. 2006; 46: 1212-1217.
[30]   W. Tadesse, M. Schmolke, S.L.K. Hsam, V. Mohler, G. Wenzel, F.J. Zeller. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet. 2007; 114(5): 855-862.
[31]   J. Lutz, S.L.K. Hsam. Limpert E, Zeller FJ. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity. 1995; 74(2): 152-156.
[32]   Y. Weng, W. Li, R.N. Devkota, J.C. Rudd. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet. 2005; 110(3): 462-469.
[33]   P. Azhaguvel, J.C. Rudd, Y. Ma, M.C. Luo, Y. Weng. Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii. Theor Appl Genet. 2012; 124(3): 555-564.
[34]   K.K. Nkongolo, J.S. Quick, A.E. Limin, D.B. Fowler. Sources and inheritance of resistance to Russian wheat aphid in Triticum species, amphiploids and Triticum tauschii. Can J Plant Sci. 1991; 71(3): 703-708.
[35]   J.B. Thomas, R.I. Conner. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Sci. 1986; 26(3): 527-530.
[36]   X.M. Liu, B.S. Gill, M.S. Chen. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet. 2005; 111(2): 243-249.
[37]   T. Wang, S.S. Xu, M.O. Harris, J. Hu, L. Liu, X. Cai. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet. 2006; 113(4): 611-618.
[38]   A. Jighly, M. Alagu, F. Makdis, M. Singh, S. Singh, L.C. Emebiri, et al.. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breed. 2016; 36(9): 127.
[39]   H. Zegeye, A. Rasheed, F. Makdis, A. Badebo, F.C. Ogbonnaya. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One. 2014; 9(8): e105593.
[40]   A.G. Kazi, A. Rasheed, T. Mahmood, A. Mujeeb-Kazi. Molecular and morphological diversity with biotic stress resistances of high 1000-grain weight synthetic hexaploid wheats. Pak J Bot. 2012; 44(3): 1021-1028.
[41]   M. Liu, C.Z. Zhang, C.L. Yuan, L.Q. Zhang, L. Huang, J.J. Wu, et al.. Stripe rust resistance in Aegilops tauschii germplasm. Crop Sci. 2013; 53: 2014-2020.
[42]   L. Huang, L.Q. Zhang, B.L. Liu, Z.H. Yan, B. Zhang, H.G. Zhang, et al.. Molecular tagging of a stripe rust resistance gene in Aegilops tauschii. Euphytica. 2011; 179(2): 313-318.
[43]   L.M. Wang, Z.Y. Zhang, H.J. Liu, S.C. Xu, M.Z. He, H.X. Liu, et al.. Identification, gene postulation and molecular tagging of a stripe rust resistance gene in synthetic wheat CI142. Cereal Res Commun. 2009; 37(2): 209-215.
[44]   R.P. Singh, J.C. Nelson, M.E. Sorrells. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 2000; 40(4): 1148-1155.
[45]   G.Q. Li, Z.F. Li, W.Y. Yang, Y. Zhang, Z.H. He, S.C. Xu, et al.. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet. 2006; 112(8): 1434-1440.
[46]   H. Ma, R.P. Singh, A. Mujeeb-kazi. Suppression expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica. 1995; 83(2): 87-93.
[47]   R.M. Trethowan, A. Mujeeb-Kazi. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 2008; 48(4): 1255-1265.
[48]   A.F. Dreccer, A.G. Borgognone, F.C. Ogbonnaya, R.M. Trethowan, B. Winter. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Res. 2007; 100(2–3): 218-228.
[49]   R. Munns, D.P. Schachtman, A.G. Condon. The significance of a 2-phase growth-response to salinity in wheat and barley. Aust J Plant Physiol. 1995; 22(4): 561-569.
[50]   M. Jamil, A. Ali, K.F. Akbar, A. Ghafoor, A.A. Napar, S. Asad, et al.. Relationship among water use efficiency, canopy temperature, chlorophyll content and spot blotch (Cochliobolus sativus) resistance in diverse wheat (Triticum aestivum L.) germplasm. Pak J Bot. 2016; 48(3): 993-998.
[51]   M. Van Ginkel, F. Ogbonnaya. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 2007; 104(1–3): 86-94.
[52]   J. Jafarzadeh, D. Bonnett, J.L. Jannink, D. Akdemir, S. Dreisigacker, M.E. Sorrells. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS One. 2016; 11(9): e0162860.
[53]   J.C.M. Iehisa, S. Takumi. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet Syst. 2012; 87(1): 9-18.
[54]   D.C. Liu, X.J. Lan, Z.R. Wang, Y.L. Zheng, Y.H. Zhou, J.L. Yang, et al.. Evaluation of Aegilops tauschii Cosson for preharvest sprouting tolerance. Genet Resour Crop Evol. 1998; 45(6): 495-498.
[55]   K.T. Gatford, P. Hearnden, F. Ogbonnaya, R.F. Eastwood, G.M. Halloran. Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii. Euphytica. 2002; 126(1): 67-76.
[56]   M. Imtiaz, F.C. Ogbonnaya, J. Oman, M. van Ginkel. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics. 2008; 178(3): 1725-1736.
[57]   Y. Okamoto, A.T. Nguyen, M. Yoshioka, J.C.M. Iehisa, S. Takumi. Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci. 2013; 63(4): 423-429.
[58]   A. Rattey, R. Shorter, S. Chapman, F. Dreccer, A. van Herwaarden. Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments. Crop Pasture Sci. 2009; 60(8): 717-729.
[59]   A.R. Rattey, R. Shorter, S.C. Chapman. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. II. Grain yield components and physiological traits. Field Crops Res. 2011; 124(2): 195-204.
[60]   V.J. Shearman, R. Sylvester-Bradley, R.K. Scott, M.J. Foulkes. Physiological processes associated with wheat yield progress in the UK. Crop Sci. 2005; 45(1): 175-185.
[61]   J.K. Cooper, A.M.H. Ibrahim, J. Rudd, S. Malla, D.B. Hays, J. Baker. Increasing hard winter wheat yield potential via synthetic wheat: I. Path-coefficient analysis of yield and its components. Crop Sci. 2012; 52(5): 2014-2022.
[62]   I.A. Del Blanco, S. Rajaram, W.E. Kronstad. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci. 2001; 41(3): 670-676.
[63]   B. Narasimhamoorthy, B.S. Gill, A.K. Fritz, J.C. Nelson, G.L. Brown-Guedira. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet. 2006; 112(5): 787-796.
[64]   J. Li, H.S. Wan, W.Y. Yang. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol. 2014; 52(6): 735-742.
[65]   J. Li, H.T. Wei, X.R. Hu, C.S. Li, Y.L. Tang, D.C. Liu, et al.. Identification of a high-yield introgression locus in Chuanmai 42 inherited from synthetic hexaploid wheat. Acta Agron Sin. 2011; 37(2): 255-262.
[66]   H.S. Wan, Y.M. Yang, J. Li, Z.F. Zhang, W. Yang. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica. 2015; 205(1): 275-285.
[67]   R.L. Villareal, G. Fuentes-Davila, A. Mujeeb-Kazi, S. Rajaram. Inheritance of resistance to Tilletia indica (Mitra) in synthetic hexaploid wheat × Triticum aestivum crosses. Plant Breed. 1995; 114(6): 547-548.
[68]   A. Li, D. Liu, J. Wu, X. Zhao, M. Hao, S. Geng, et al.. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell. 2014; 26(5): 1878-1900.
[69]   I. Mestiri, V. Chagué, A.M. Tanguy, C. Huneau, V. Huteau, H. Belcram, et al.. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol. 2010; 186(1): 86-101.
[70]   H. Shaked, K. Kashkush, H. Ozkan, M. Feldman, A.A. Levy. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001; 13(8): 1749-1759.
[71]   N. Zhao, L. Xu, B. Zhu, M. Li, H. Zhang, B. Qi, et al.. Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome. 2011; 54(8): 692-699.
[72]   N. Zhao, B. Zhu, M. Li, L. Wang, L. Xu, H. Zhang, et al.. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics. 2011; 188(3): 499-510.
[73]   H.K. Zhang, Y. Bian, X.W. Gou, Y.Z. Dong, S. Rustgi, B.J. Zhang, et al.. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci USA. 2013; 110(48): 19466-19471.
[74]   H. Zhang, Y. Bian, X. Gou, B. Zhu, C. Xu, B. Qi, et al.. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA. 2013; 110(9): 3447-3452.
[75]   A.R. Akhunova, R.T. Matniyazov, H. Liang, E.D. Akhunov. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics. 2010; 11: 505.
[76]   A. Bottley, G.M. Xia, R.M.D. Koebner. Homoeologous gene silencing in hexaploid wheat. Plant J. 2006; 47(6): 897-906.
[77]   V. Chagué, J. Just, I. Mestiri, S. Balzergue, A.M. Tanguy, C. Huneau, et al.. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol. 2010; 187(4): 1181-1194.
[78]   H. Chelaifa, V. Chagué, S. Chalabi, I. Mestiri, D. Arnaud, D. Deffains, et al.. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. New Phytol. 2013; 197(3): 730-736.
[79]   P. He, B.R. Friebe, B.S. Gill, J.M. Zhou. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol. 2003; 52(2): 401-414.
[80]   M. Pumphrey, J. Bai, D. Laudencia-Chingcuanco, O. Anderson, B.S. Gill. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics. 2009; 181(3): 1147-1157.
[81]   B. Qi, W. Huang, B. Zhu, X. Zhong, J. Guo, N. Zhao, et al.. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol. 2012; 10: 3.
[82]   J. Wang, L. Tian, H.S. Lee, N.E. Wei, H. Jiang, B. Watson, et al.. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2006; 172(1): 507-517.
[83]   R.A. Rapp, J.A. Udall, J.F. Wendel. Genomic expression dominance in allopolyploids. BMC Biol. 2009; 7: 18.
[84]   J. Lu, C. Zhang, D.C. Baulcombe, Z.J. Chen. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA. 2012; 109(14): 5529-5534.
[85]   H. Vaucheret. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006; 20(7): 759-771.
[86]   M. Ha, J. Lu, L. Tian, V. Ramachandran, K.D. Kasschau, E.J. Chapman, et al.. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA. 2009; 106(42): 17835-17840.
[87]   L. Comai, A.P. Tyagi, K. Winter, R. Holmes-Davis, S.H. Reynolds, Y. Stevens, et al.. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell. 2000; 12(9): 1551-1568.
[88]   J. Wang, L. Tian, A. Madlung, H.S. Lee, M. Chen, J.J. Lee, et al.. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics. 2004; 167(4): 1961-1973.
[89]   M. Kenan-Eichler, D. Leshkowitz, L. Tal, E. Noor, C. Melamed-Bessudo, M. Feldman, et al.. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics. 2011; 188(2): 263-272.
[90]   Z.J. Chen. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet. 2013; 14(7): 471-482.
[91]   J. Jia, S. Zhao, X. Kong, Y. Li, G. Zhao, W. He, et al.. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013; 496(7443): 91-95.
[92]   H.Q. Ling, S. Zhao, D. Liu, J. Wang, H. Sun, C. Zhang, et al.. The draft genome of Triticum urartu. Nature. 2013; 496: 87-90.
[93]   K.F.X. Mayer, J. Rogers, J. Dole el, C. Pozniak, K. Eversole, C. Feuillet, et al.. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014; 345(6194): 1251788.
[94]   R. Avni, M. Nave, O. Barad, K. Baruch, S.O. Twardziok, H. Gundlach, et al.. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017; 357(6346): 93-97.
[95]   A.V. Zimin, D. Puiu, R. Hall, S. Kingan, B.J. Clavijo, S.L. Salzberg. The first near-complete assembly of the hexaploid bread wheat genome Triticum aestivum. Gigascience. 2017; 6(11): 1-7.
[96]   G. Zhao, C. Zou, K. Li, K. Wang, T. Li, L. Gao, et al.. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants. 2017; 3(12): 946-955.
[97]   S. Farrakh, S. Khalid, A. Rafique, N. Riaz, A. Mujeeb-Kazi. Identification of stripe rust resistant genes in resistant synthetic hexaploid wheat accessions using linked markers. Plant Genet Resour. 2016; 14(3): 219-225.
[98]   M.S. Islam, G. Brown-Guedira, D. van Sanford, H. Ohm, Y.H. Dong, A.L. McKendry. Novel QTL associated with the Fusarium head blight resistance in Truman soft red winter wheat. Euphytica. 2016; 207(3): 571-592.
[1] Nikita Shivhare, Prabhat Kumar Singh Dikshit, Shyam Bihari Dwivedi. A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed[J]. Engineering, 2018, 4(5): 643 -652 .
[2] Lei Cui, Yongkang Ren, Timothy D. Murray, Wenze Yan, Qing Guo, Yuqi Niu, Yu Sun, Hongjie Li. Development of Perennial Wheat Through Hybridization Between Wheat and Wheatgrasses: A Review[J]. Engineering, 2018, 4(4): 507 -513 .
[3] Shengwen Tang, Yuting Hu, Shengfu Zhong, Peigao Luo. The Potential Role of Powdery Mildew-Resistance Gene Pm40 in Chinese Wheat-Breeding Programs in the Post-Pm21 Era[J]. Engineering, 2018, 4(4): 500 -506 .
[4] M.A.N. Nazim Ud Dowla, Ian Edwards, Graham O'Hara, Shahidul Islam, Wujun Ma. Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: Optimization of a Few Key Genes[J]. Engineering, 2018, 4(4): 514 -522 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.